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Python is rich in resources that can shorten the time it takes to develop new programs and simplify repetitive tasks. Decorators are one of such elements but more often than not they are not considered by less experienced developers. Adding decorators to the syntactic toolbox can be of great use in different contexts, and in this article, we are going to discuss how can they help you when communicating with a device. The example code can be found in our Github repository [https://github.com/uetke/website_content/tree/master/example_code/Examples_Decorators].

Decorators in Python are nothing more than functions that take as arguments other functions. They appear with an @ in front of them right above a function (or a method within a class). Let’s quickly recap how functions work in Python and how to use them. Imagine you want to compute the average of two values. We can develop a function for it:

def average(x, y):
   avg = (x+y)/2
   return avg





We can use the function directly in our code by writing:

a = 1
b = 3
result = average(1, 3)
print(result)





What you should see happening is that when you call the function average it adds both numbers and returns their mean value. Imagine that, for some reason, you want to allow only positive numbers as arguments of your function. You can expand the average function to check whether it is true or not.

def average(x, y):
   if x<0 or y<0:
      raise Exception("Both x and y have to be positive")

   avg = (x + y)/2
   return avg





Every time someone wants to use the function with a negative argument, an error will be raised. Later, we are asked to develop a new function to compute the geometric average of two numbers, and we need them both to be positive. Our function will look like this:

import math

def geom_average(x, y):
   if x<0 or y<0:
      raise Exception("Both x and y have to be positive")

   avg = math.sqrt(x*y)
   return avg





There is a general rule of thumb that says that code shouldn’t be copied more than twice. If you are going to copy-paste code for the third time there is probably a better way of doing it. In the examples above, you can see that the verification of the input is exactly the same in both functions. If we were to write a third function, we would meet the three-copies rule. It would be useful to have an external way of checking that both inputs are positive, and this is exactly what decorators are meant to do.


Functions as arguments and as outputs of other functions

Before we can go into the details of how to use decorators in Python, it is important to show how functions work with inputs and outputs that are other functions. For example, we could define a function that transforms the output of the averages defined above into integers. It is a very simplistic example but already shows the pattern that you can follow to achieve more complex behaviors.

def integer_output(func, x, y):
   res = func(x, y)
   return int(res)





In the code above, you can see that integer_output takes three arguments, a function func and two numbers, x and y . We use the function, regardless of what it is, with arguments x and y. It then returns the result of func converted to an integer value. integer_output can be used like this:

rounded = integer_output(average, 1, 2)
print(rounded)
geom_rounded = integer_output(geom_average, 4, 5)
print(geom_rounded)





It is important to note that the first argument is a function and it doesn’t matter which one. You could use average or geom_average. The next two arguments are going to be passed directly to func . This is already quite powerful and most likely you can think a lot of ways in which you can use it, but Python allows you to do even more interesting things.

Functions can also be defined within functions and you can use them based on your input arguments. For example, let’s assume you want to use average only if the sum of x and y is even and the geom_average if the sum is odd:

def even_odd_average(x, y):
   def average(a, b):
      return (a+b)/2
   def geom_average(a, b):
      return math.sqrt(a*b)

   if (x+y) % 2 == 0:
      return average(x, y)
   else:
      return geom_average(x, y)





The function even_odd_average takes only two arguments on which it is going to perform the average. Inside we define two functions, exactly as we did earlier, average and geom_average, but this time they are available only within the even_odd_average function. Based on the input from the user, we either calculate the average or the geometric average as requested earlier and we return the value. We can use this function as:

print(even_odd_average(4, 6))
print(even_odd_average(4, 9))





So far, we have seen how to use functions as arguments in other functions and how to define functions within functions. The only missing part is to be able to return a function instead of a value. Let’s assume you want to print the time it takes to calculate the average between two numbers, but you don’t want to re-write your original function. We have to write a function wrapper.

import time

def timing_average(func):
   def wrapper(x, y):
      t0 = time.time()
      res = func(x, y)
      t1 = time.time()
      print("It took {} seconds to calculate the average".format(t1-t0))
      return res

   return wrapper





We start by defining a function that takes as an argument another function. We also define a new function called wrapper as we explained earlier. So far, both steps were done in the previous examples, but now we are going to use func within the wrapper. We start by storing the current time at the variable t0. We execute the function func with the arguments x and y and store the new time at t1. We print the total time it took to run the function and return the output of func. The important part here is the very last line. As you can see, we are not returning the value that func returns, but we are actually returning the wrapper, which is in itself a function. To see this in action, we can do the following:

new = timing_average(average)
new(2, 4)





What you see in the above code is that we create a function called new by using timing_average with only one argument, the function average. New will take the same inputs that the wrapper function takes. If we use new as a function, with arguments 2 and 4 , you will see that it prints to screen the total time it took to calculate the average. new is nothing more than the function wrapper, defined using average. We could do the same using geom_average:

new_geom = timing_average(geom_average)
new_geom(4,5)





The syntax above can be hard to understand and forces you to define new functions to add timing capabilities. When you see that you are assigning the output of timing_average to a variable called new you don’t expect it to actually be a function. If you already have working code, you need to do a lot of refactoring in order to define and use the new functions.

Fortunately, Python offers a very clear and simple way of achieving the same functionality, without the downsides just said. If you managed to follow the above examples, you are ready to improve the way the code looks like by using Python syntactic sugar.




Syntactic Sugar for Decorators

You already know almost everything there is to know regarding how to use decorators, you are just missing the syntactic sugar of Python. With what you have already done, you can improve the style of your code quite easily. Assuming you want to add timing capabilities to your average or geometrical average function, you can simply do:

@timing_average
def average(x, y):
   return (x+y)/2





By simply adding @timing_average before your function, you are now able to use average as always, but printing the time it takes to calculate it. The obvious advantage of this syntax is that it allows you to add an interesting new functionality without altering your downstream code. You don’t need to define a new function, you only need to add one line of code before the definition of your average. It runs as always:

avg = average(4, 6)
print('The average between 4 and 6 is {}'.format(avg))





Coming back to the examples of the averages that take only positive arguments, and building on the example of timing_average, we can develop a wrapper function that would check whether the input of our function is positive or not.

def check_positive(func):
   def func_wrapper(x, y):
      if x<0 or y<0:
         raise Exception("Both x and y have to be positive for function {} to work".format(func.__name__))
      res = func(x,y)
      return res
   return func_wrapper





The structure of check_positive is very similar to what we have done for the timing. The only difference is that we check the input arguments and we raise an Exception if they are not both positive. Since we are raising an exception for an unknown function, it becomes handy to display which function actually gave the error. We achieve that by using func.__name__, which will tell us the name of the function. The rest is exactly the same as with the timing example. We can write our average functions as follows:

@check_positive
def average(x, y):
   return (x + y)/2

@check_positive
def geom_average(x, y):
   return math.sqrt(x*y)





Both functions, average and geom_average don’t change their names, therefore you can use them as always, but they will check for positive input before computing the average:

average(2, 4)
average(-2, 4)
geom_average(4, 9)
geom_average(-4, 10)





Decorators can also be combined, you can time a function AND request the inputs to be positive:

@timing_average
@check_positive
def average(x, y):
   return (x + y)/2





You can play around and see what happens if you change the order of the decorators. Importantly, if you use func.__name__ to print the name of the function that raised the Exception within a decorator, you can see that the name can change and become the name of the wrapper. In most cases this is not a desired situation because you won’t be able to debug what is the real function giving troubles, you will just get the name of the decorator. However, this is a more subtle topic that will be covered in the future.

Decorators are very powerful and can help you develop very clean and useful code. The obvious application of decorators is to validate the input provided by the user. Decorators are also very useful when you are writing a library that other developers are going to use. Or when you want to alter the behavior of a method or function in a systematic way. For example, you could use some cache in order to avoid running the same function with the same arguments over and over again.

One of the advantages of decorators is that even if a developer doesn’t fully understand what it is happening under the hood, it will for sure understand how to use them and what to expect. If you provide good examples in your code it will become apparent where and when to include specific decorators. Now that you have a basic understanding of what the @ means in Python you can start thinking about many more interesting applications.

In this article, we have shown a couple of very basic examples that can be greatly improved. If you have ever encountered decorators and didn’t understand how to use them, or you are looking for more specific information, leave your message in the comment section below and we will use your feedback to write a follow up article specifically designed to answer your questions.
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When dealing with large amounts of data, either experimental or simulated, saving it to several text files is not very efficient.  Sometimes you need to access a very specific subset of data and you want to do it fast. In these situations, the HDF5 format solves both issues thanks to a very optimized underlying library. HDF5 is broadly used in scientific environments and has a great implementation in Python, designed to work with numpy out of the box.

The HDF5 format in principle supports files of any size, each file has an internal structure that allows you to search for a specific dataset. You can think of it as a single file with its own hierarchical structure, just like a collection of folders and subfolders. By default, the data is stored in binary format and the library is compatible with different data types. One of the most important options of the HDF5 format is that it allows attaching metadata to every element in the structure, making it ideal for generating self-contained files.

In Python, the interface with the HDF5 format can be achieved through a package called h5py. One of the most interesting features of the h5py package is that data is read from the file only when it is needed. Imagine you have a very large array that doesn’t fit in your available RAM memory. You could have generated the array, for example, in a computer with different specifications than the one you are using to analyze the data. The HDF5 format allows you to choose which elements of the array to read with a syntax equivalent to numpy. You can then work with the data stored on a hard drive rather than in the RAM memory without much modifications to your existent code.

In this article, we are going to see how you can use h5py to store and retrieve data from a hard drive. We are going to discuss different ways of storing data and how to optimize the reading process. All the examples that appear in this article are also available on our Github repository [https://github.com/uetke/website_content/tree/master/example_code/HDF_Examples].
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Installing

The HDF5 format is supported by the HDF Group [https://www.hdfgroup.org/], and it is based on open source standards, meaning that your data will always be accessible, even if the group disappears. Support for Python is given through the h5py package [https://www.h5py.org/] that can be installed through pip. Remember that you should be using a virtual environment to perform tests:

pip install h5py





the command will also install numpy in case you don’t have it already in your environment.

If you are looking for a graphical tool to explore the contents of your HDF5 files, you can install the HDF5 Viewer [https://support.hdfgroup.org/products/java/hdfview/]. It is written in Java so it should work on almost any computer.




Basic Saving and Reading Data

Let’s go straight to using the HDF5 library. We will create a new file and save a numpy random array to it.

import h5py
import numpy as np

arr = np.random.randn(1000)

with h5py.File('random.hdf5', 'w') as f:
    dset = f.create_dataset("default", data=arr)





The first few lines are quite straightforward, we import the packages h5py and numpy and create an array with random values. We open a file called random.hdf5 with write permission, w , which means that if there is already a file with the same name it is going to be overwritten. If you would like to preserve the file and still be able to write to it, you can open it with the a attribute instead of w.  We create a dataset called default and we set the data as the random array created earlier. Datasets are holders of our data, basically the building blocks of the HDF5 format.


Note

If you are not familiar with the with statement, I shall say that it is a convenient way of opening and closing a file. Even if there is an error within the with, the file is going to be closed. If for some reason you don’t use the with, never forget to add the command f.close() at the end. The with statement works with any kind of file, not necessarily an HDF file.



To read the data back, we can do it in a very similar way to when we read a numpy file:

with h5py.File('random.hdf5', 'r') as f:
   data = f['default']
   print(min(data))
   print(max(data))
   print(data[:15])





We open the file with a read attribute, r , and we recover the data by directly addressing the dataset called default. If you are opening a file and you are not sure which data sets are available, you can retrieve them:

for key in f.keys():
   print(key)





Once you have read the data set that you want, you can use it as you would use any numpy array. For example, you can check the maximum and minimum values in the array, or you can select the first 15 values of it. These simple examples, however, are hiding a lot of the things that happen under the hood and that need to be discussed in order to understand the full potential of HDF5.

In the example above, you can use data as an array. You can, for example, address the third element by typing data[2], or you could get a range of values with data[1:3]. Note that data is not an array but a dataset. You can see it by typing print(type(data)). Datasets work in a completely different way than arrays because their information is stored on the hard drive and they don’t load it to RAM memory if we don’t use them. The following code, for example, will not work:

f = h5py.File('random.hdf5', 'r')
data = f['default']
f.close()
print(data[1])





The error that appears is a bit lengthy, but the last line is very helpful:

ValueError: Not a dataset (not a dataset)





The error means that we are trying to access a dataset to which we have no longer access. It is a bit confusing, but this happens because we closed the file, and therefore we are no longer allowed to access the second value in data. When we assigned f['default'] to the variable data we are not actually reading the data from the file, instead, we are generating a pointer to where the data is located on the hard drive. On the other hand, this code will work:

f = h5py.File('random.hdf5', 'r')
data = f['default'][:]
f.close()
print(data[10])





If you pay attention, the only difference is that we added [:] after reading the dataset. Many other guides stop at these sort of examples, without ever really showing the full potential of the HDF5 format with the h5py package. Because of the examples that we did up to now, you could wonder why using HDF5, if saving numpy files gives you the same functionality. Let’s dive into the specifics of the HDF5 format.




Selective Reading from HDF5 files

So far we have seen that when we read a dataset we are not yet reading data from the disk, instead, we are creating a link to a specific location on the hard drive. We can see what happens if, for example, we explicitly read the first 10 elements of a dataset:

We are splitting the code into different lines to make it more explicit, but you can be more synthetic in your projects. In the lines above we first read the file, and we then read the default dataset. We assign the first 10 elements of the dataset to a variable called data. After the file closes (when the with finishes), we can access the values stored in data, but data_set will give an error. Note that we are only reading from the disk when we explicitly access the first 10 elements of the data set. If you print the type of data and of data_set you will see that they are actually different. The first is a numpy array while the second is an h5py DataSet.

The same behavior works in more complex scenarios. Let’s create a new file, this time with two data sets, and let’s select the elements of one based on the elements of the other. Let’s start by creating a new file and storing data; that part is the easiest one:

import h5py
import numpy as np

arr1 = np.random.randn(10000)
arr2 = np.random.randn(10000)

with h5py.File('complex_read.hdf5', 'w') as f:
    f.create_dataset('array_1', data=arr1)
    f.create_dataset('array_2', data=arr2)





We have two datasets called array_1 and array_2, each has a random numpy array stored in it. We want to read the values of array_2 that correspond to the elements where the values of array_1 are positive. We can try to do something like this:

with h5py.File('complex_read.hdf5', 'r') as f:
    d1 = f['array_1']
    d2 = f['array_2']

    data = d2[d1>0]





but it will not work. d1 is a dataset and can’t be compared to an integer. The only way is to actually read the data from the disk and then compare it. Therefore, we will end up with something like this:

with h5py.File('complex_read.hdf5', 'r') as f:
    d1 = f['array_1']
    d2 = f['array_2']

    data = d2[d1[:]>0]





The first dataset, d1 is completely loaded into memory when we do d1[:], but we grab only some elements from the second dataset d2. If the d1 dataset would have been too large to be loaded into memory all at once, we could have worked inside a loop.

with h5py.File('complex_read.hdf5', 'r') as f:
    d1 = f['array_1']
    d2 = f['array_2']

    data = []

    for i in range(len(d1)):
        if d1[i] > 0:
            data.append(d2[i])

print('The length of data with a for loop: {}'.format(len(data)))





Of course, there are efficiency concerns regarding reading an array element by element and appending it to a list, but it is a very good example of one of the greatest advantages of using HDF5 over text or numpy files. Within the loop, we are loading into memory only one element. In our example, each element is just a number, but it could have been anything, from a text to an image or a video.

As always, depending on your application, you will have to decide if you want to read the entire array into memory or not. Sometimes you run simulations on a specific computer with loads of memory, but you don’t have the same specifications in your laptop and you are forced to read chunks of your data. Remember that reading from a hard drive is relatively slow, especially if you are using HDD instead of SDD disks or even more if you are reading from a network drive.




Selective Writing to HDF5 Files

In the examples above we have appended data to a data set as soon as this was created. For many applications, however, you need to save data while it is being generated. HDF5 allows you to save data in a very similar way to how you read it back. Let’s see how to create an empty dataset and add some data to it.

arr = np.random.randn(100)

with h5py.File('random.hdf5', 'w') as f:
   dset = f.create_dataset("default", (1000,))
   dset[10:20] = arr[50:60]





The first couple of lines are the same as before, with the exception of create_dataset. We don’t append data when creating it, we just create an empty dataset able to hold up to 1000 elements. With the same logic as before, when we read specific elements from the dataset, we are actually writing to disk only when we assign values to specific elements of the dset variable. In the example above we are assigning values just to a subset of the array, the indexes 10 to 19.


Warning

It is not entirely true that you write to disk when you assign values to a dataset. The precise moment depends on several factors, including the state of the operating system. If the program closes too early, it may happen that not everything was written. It is very important to always use the close() method, and in case you write in stages, you can also use flush() in order to force the writing. Using with prevents a lot of writing issues.



If you read the file back and print the first 20 values of the dataset, you will see that they are all zeros except for the indexes 10 to 19. There is a common mistake that can give you a lot of headaches. The following code will not save anything to disk:

arr = np.random.randn(1000)

with h5py.File('random.hdf5', 'w') as f:
   dset = f.create_dataset("default", (1000,))
   dset = arr





This mistake always gives a lot of issues, because you won’t realize that you are not saving anything until you try to read it back. The problem here is that you are not specifying where you want to store the data, you are just overwriting the dset variable with a numpy array. Since both the dataset and the array have the same length, you should have used dset[:] = arr. This mistake happens more often than you think, and since it is technically not wrong, you won’t see any errors printed to the terminal, but your data will be just zeros.

So far we have always worked with 1-dimensional arrays but we are not limited to them. For example, let’s assume we want to use a 2D array, we can simply do:

dset = f.create_dataset('default', (500, 1024))





which will allow us to store data in a 500x1024 array. To use the dataset, we can use the same syntax as before, but taking into account the second dimension:

dset[1,2] = 1
dset[200:500, 500:1024] = 123








Specify Data Types to Optimize Space

So far, we have covered only the tip of the iceberg of what HDF5 has to offer. Besides the length of the data you want to store, you may want to specify the type of data in order to optimize the space. The h5py documentation [http://docs.h5py.org/en/latest/faq.html] provides a list of all the supported types, here we are going to show just a couple of them. We are going to work with several datasets in the same file at the same time.

with h5py.File('several_datasets.hdf5', 'w') as f:
   dset_int_1 = f.create_dataset('integers', (10, ), dtype='i1')
   dset_int_8 = f.create_dataset('integers8', (10, ), dtype='i8')
   dset_complex = f.create_dataset('complex', (10, ), dtype='c16')

   dset_int_1[0] = 1200
   dset_int_8[0] = 1200.1
   dset_complex[0] = 3 + 4j





In the example above, we have created three different datasets, each with a different type. Integers of 1 byte, integers of 8 bytes and complex numbers of 16 bytes. We are storing only one number, even if our datasets can hold up to 10 elements. You can read the values back and see what was actually stored. The two things to note here are that the integer of 1 byte should have been rounded to 127 (instead of 1200), and the integer of 8 bytes should have been rounded to 1200 (instead of 1200.1).

If you have ever programmed in languages such as C or Fortran, you probably are aware of what different data types mean. However, if you have always worked with Python, perhaps you haven’t faced any issues by not declaring explicitly the type of data you are working with. The important thing to remember is that the number of bytes tells you how many different numbers you can store. If you use 1 byte, you have 8 bits and therefore you can store 2^8 different numbers. In the example above, integers are both positive, negative, and 0. When you use integers of 1 byte you can store values from -128 to 127, in total they are 2^8 possible numbers. It is equivalent when you use 8 bytes, but with a larger range of numbers.

The type of data that you select will have an impact on its size. First, let’s see how this works with a simple example. Let’s create three files, each with one dataset for 100000 elements but with different data types. We will store the same data to them and then we can compare their sizes. We create a random array to assign to each dataset in order to fill the memory. Remember that data will be converted to the format specified in the dataset.

arr = np.random.randn(100000)

f = h5py.File('integer_1.hdf5', 'w')
d = f.create_dataset('dataset', (100000,), dtype='i1')
d[:] = arr
f.close()

f = h5py.File('integer_8.hdf5', 'w')
d = f.create_dataset('dataset', (100000,), dtype='i8')
d[:] = arr
f.close()

f = h5py.File('float.hdf5', 'w')
d = f.create_dataset('dataset', (100000,), dtype='f16')
d[:] = arr
f.close()





If you check the size of each file you will get something like:







	File

	Size (b)



	integer_1

	102144



	integer_8

	802144



	float

	1602144






The relation between size and data type is quite obvious. When you go from integers of 1 byte to integer of 8 bytes, the size of the file increases 8-fold, similarly, when you go to 16 bytes it takes approximately 16 times more space. But space is not the only important factor to take into account, you should also consider the time it takes to write the data to disk. The more you have to write, the longer it will take. Depending on your application it may be crucial to optimize the reading and writing of data.

Note that if you use the wrong data type, you may also lose information. For example, if you have integers of 8 bytes and you store them as integers of 1 byte, their values are going to be trimmed. When working in the lab, it is very common to have devices that produce different types of data. Some DAQ cards have 16 bits, some cameras work with 8 bits but some can work with 24. Paying attention to data types is important, but is also something that Python developers may not take into account because you don’t have to explicitly declare a type.

It is also interesting to remember that when you initialize an array with numpy it will default to float 8 bytes (64 bits) per element. This may be a problem if, for example, you initialize an array with zeros to hold data that is going to be only 2 bytes. The type of the array itself is not going to change, and if you save the data when creating the dataset (adding data=my_array) it will default to the format 'f8', which is the one the array has but not your real data.

Thinking about data types is not something that happens on a regular basis if you work with Python on simple applications. However, you should know that data types are there and the impact they can have on your results. Perhaps you have large hard drives and you don’t care about storing files a bit larger, but when you care about the speed at which you save, there is no other workaround but to optimize every aspect of your code, including the data types.




Compressing Data

When saving data, you may opt for compressing it using different algorithms. The package h5py supports a few compression filters such as GZIP, LZF, and SZIP. When using one of the compression filters, the data will be processed on its way to the disk and it will be decompressed when reading it. Therefore, there is no change in how the code works downstream. We can repeat the same experiment, storing different data types, but using a compression filter. Our code looks like this:

import h5py
import numpy as np

arr = np.random.randn(100000)

with h5py.File('integer_1_compr.hdf5', 'w') as f:
    d = f.create_dataset('dataset', (100000,), dtype='i1', compression="gzip", compression_opts=9)
    d[:] = arr

with h5py.File('integer_8_compr.hdf5', 'w') as f:
    d = f.create_dataset('dataset', (100000,), dtype='i8', compression="gzip", compression_opts=9)
    d[:] = arr

with h5py.File('float_compr.hdf5', 'w') as f:
    d = f.create_dataset('dataset', (100000,), dtype='f16', compression="gzip", compression_opts=9)
    d[:] = arr





We chose gzip because it is supported in all platforms. The parameters compression_opts sets the level of compression. The higher the level, the less space data takes but the longer the processor has to work. The default level is 4. We can see the differences in our files based on the level of compression:









	Type

	No Compression

	Compression 9

	Compression 4



	integer_1

	102144

	28016

	30463



	integer_8

	802144

	43329

	57971



	float

	1602144

	1469580

	1469868






The impact of compression on the integer datasets is much more noticeable than with the float dataset. I leave it up to you to understand why the compressing worked so well in the first two cases and not in the other. As a hint, you should inspect what kind of data you are actually saving.

Reading compressed data doesn’t change any of the code discussed above. The underlying HDF5 library will take care of extracting the data from the compressed datasets with the appropriate algorithm. Therefore, if you implement compression for saving, you don’t need to change the code you use for reading.

Compressing data is an extra tool that you have to consider, together with all the other aspects of data handling. You should consider the extra processor time and the effective compressing rate to see if the tradeoff between both compensates within your own application. The fact that it is transparent to downstream code makes it incredibly easy to test and find the optimum.




Resizing Datasets

When you are working on an experiment, it may be impossible to know how big your data is going to be. Imagine you are recording a movie, perhaps you stop it after one second, perhaps after an hour. Fortunately, HDF5 allows resizing datasets on the fly and with little computational cost. Datasets can be resized once created up to a maximum size. You specify this maximum size when creating the dataset, via the keyword maxshape:

import h5py
import numpy as np

with h5py.File('resize_dataset.hdf5', 'w') as f:
    d = f.create_dataset('dataset', (100, ),  maxshape=(500, ))
    d[:100] = np.random.randn(100)
    d.resize((200,))
    d[100:200] = np.random.randn(100)

with h5py.File('resize_dataset.hdf5', 'r') as f:
    dset = f['dataset']
    print(dset[99])
    print(dset[199])





First, you create a dataset to store 100 values and set a maximum size of up to 500 values. After you stored the first batch of values, you can expand the dataset to store the following 100. You can repeat the procedure up to a dataset with 500 values. The same holds true for arrays with different shapes, any dimension of an N-dimensional matrix can be resized. You can check that the data was properly stored by reading back the file and printing two elements to the command line.

You can also resize the dataset at a later stage, don’t need to do it in the same session when you created the file. For example, you can do something it like this (pay attention to the fact that we open the file with an a attribute in order not to destroy the previous file):

with h5py.File('resize_dataset.hdf5', 'a') as f:
    dset = f['dataset']
    dset.resize((300,))
    dset[:200] = 0
    dset[200:300] = np.random.randn(100)

with h5py.File('resize_dataset.hdf5', 'r') as f:
    dset = f['dataset']
    print(dset[99])
    print(dset[199])
    print(dset[299])





In the example above you can see that we are opening the dataset, modifying its first 200 values, and appending new values to the elements in the position 200 to 299. Reading back the file and printing some values proves that it worked as expected.

Imagine you are acquiring a movie but you don’t know how long it will be. An image is a 2D array, each element being a pixel, and a movie is nothing more than stacking several 2D arrays. To store movies we have to define a 3-dimensional array in our HDF file, but we don’t want to set a limit to the duration. To be able to expand the  third axis of our dataset without a fixed maximum, we can do as follows:

with h5py.File('movie_dataset.hdf5', 'w') as f:
   d = f.create_dataset('dataset', (1024, 1024, 1),  maxshape=(1024, 1024, None ))
   d[:,:,0] = first_frame
   d.resize((1024,1024,2))
   d[:,:,1] = second_frame





The dataset holds square images of 1024x1024 pixels, while the third dimension gives us the stacking in time. We assume that the images don’t change in shape, but we would like to stack one after the other without establishing a limit. This is why we set the third dimension’s maxshape to None.




Save Data in Chunks

To optimize the storing of data you can opt to do it in chunks. Each chunk will be contiguous on the hard drive and will be stored as a block, i.e. the entire chunk will be written at once. When reading a chunk, the same will happen, entire chunks are going to be loaded. To create a chunked dataset, the command is:

dset = f.create_dataset("chunked", (1000, 1000), chunks=(100, 100))





The command means that all the data in dset[0:100,0:100] will be stored together. It is also true for dset[200:300, 200:300], dset[100:200, 400:500], etc. According to h5py, there are some performance implications while using chunks:


Chunking has performance implications. It is recommended to keep the total size of your chunks between 10 KiB and 1 MiB, larger for larger datasets. Also keep in mind that when any element in a chunk is accessed, the entire chunk is read from disk.




There is also the possibility of enabling auto-chunking, that will take care of selecting the best size automatically. Auto-chunking is enabled by default if you use compression or maxshape. You enable it explicitly by doing:

dset = f.create_dataset("autochunk", (1000, 1000), chunks=True)








Organizing Data with Groups

We have seen a lot of different ways of storing and reading data. Now we have to cover one of the last important topics of HDF5 that is how to organize the information in a file. Datasets can be placed inside groups, that behave in a similar way to how directories do. We can create a group first and then add a dataset to it:

import numpy as np
import h5py

arr = np.random.randn(1000)

with h5py.File('groups.hdf5', 'w') as f:
    g = f.create_group('Base_Group')
    gg = g.create_group('Sub_Group')

    d = g.create_dataset('default', data=arr)
    dd = gg.create_dataset('default', data=arr)





We create a group called Base_Group and within it, we create a second one called Sub_Group. In each one of the groups, we create a dataset called default and save the random array into them. When you read back the files, you will notice how data is structured:

with h5py.File('groups.hdf5', 'r') as f:
   d = f['Base_Group/default']
   dd = f['Base_Group/Sub_Group/default']
   print(d[1])
   print(dd[1])





As you can see, to access a dataset we address it as a folder within the file: Base_Group/default or Base_Group/Sub_Group/default. When you are reading a file, perhaps you don’t know how groups were called and you need to list them. The easiest way is using keys():

with h5py.File('groups.hdf5', 'r') as f:
    for k in f.keys():
        print(k)





However, when you have nested groups, you will also need to start nesting for-loops. There is a better way of iterating through the tree, but it is a bit more involved. We need to use the visit() method, like this:

def get_all(name):
   print(name)

with h5py.File('groups.hdf5', 'r') as f:
   f.visit(get_all)





Notice that we define a function get_all that takes one argument, name. When we use the visit method, it takes as argument a function like get_all. visit will go through each element and while the function doesn’t return a value other than None, it will keep iterating. For example, imagine we are looking for an element called Sub_Group we have to change get_all:

def get_all(name):
    if 'Sub_Group' in name:
        return name

with h5py.File('groups.hdf5', 'r') as f:
    g = f.visit(get_all)
    print(g)





When the method visit is iterating through every element, as soon as the function returns something that is not None it will stop and return the value that get_all generated. Since we are looking for the Sub_Group, we make the get_all return the name of the group when it finds Sub_Group as part of the name that is analyzing. Bear in mind that g is a string, if you want to actually get the group, you should do:

with h5py.File('groups.hdf5', 'r') as f:
   g_name = f.visit(get_all)
   group = f[g_name]





And you can work as explained earlier with groups. A second approach is to use a method called visititems that takes a function with two arguments: name and object. We can do:

def get_objects(name, obj):
   if 'Sub_Group' in name:
      return obj

with h5py.File('groups.hdf5', 'r') as f:
   group = f.visititems(get_objects)
   data = group['default']
   print('First data element: {}'.format(data[0]))





The main difference when using visititems is that we have accessed not only the name of the object that is being analyzed but also the object itself. You can see that what the function returns is the object and not the name. This pattern allows you to achieve more complex filtering. For example, you may be interested in the groups that are empty, or that have a specific type of dataset in them.




Storing Metadata in HDF5

One of the aspects that are often overlooked in HDF5 is the possibility to store metadata attached to any group or dataset. Metadata is crucial in order to understand, for example, where the data came from, what were the parameters used for a measurement or a simulation, etc. Metadata is what makes a file self-descriptive. Imagine you open older data and you find a 200x300x250 matrix. Perhaps you know it is a movie, but you have no idea which dimension is time, nor the timestep between frames.

Storing metadata into an HDF5 file can be achieved in different ways. The official one is by adding attributes to groups and datasets.

In the code above you can see that the attrs is like a dictionary. In principle, you shouldn’t use attributes to store data, keep them as small as you can. However, you are not limited to single values, you can also store arrays. If you happen to have metadata stored in a dictionary and you want to add it automatically to the attributes, you can use update:

with h5py.File('groups.hdf5', 'w') as f:
   g = f.create_group('Base_Group')
   d = g.create_dataset('default', data=arr)

   metadata = {'Date': time.time(),
      'User': 'Me',
      'OS': os.name,}

   f.attrs.update(metadata)

   for m in f.attrs.keys():
      print('{} => {}'.format(m, f.attrs[m]))





Remember that the data types that hdf5 supports are limited. For example, dictionaries are not supported. If you want to add a dictionary to an hdf5 file you will need to serialize it. In Python, you can serialize a dictionary in different ways. In the example below, we are going to do it with JSON because it is very popular in different fields, but you are free to use whatever you like, including pickle.

import json

with h5py.File('groups_dict.hdf5', 'w') as f:
    g = f.create_group('Base_Group')
    d = g.create_dataset('default', data=arr)

    metadata = {'Date': time.time(),
                'User': 'Me',
                'OS': os.name,}

    m = g.create_dataset('metadata', data=json.dumps(metadata))





The beginning is the same, we create a group and a dataset. To store the metadata we define a new dataset, appropriately called metadata. When we define the data, we use json.dumps that will transform a dictionary into a long string. We are actually storing a string and not a dictionary into HDF5. To load it back we need to read the data set and transform it back to a dictionary using json.loads:

with h5py.File('groups_dict.hdf5', 'r') as f:
    metadata = json.loads(f['Base_Group/metadata'][()])
    for k in metadata:
        print('{} => {}'.format(k, metadata[k]))





When you use json to encode your data, you are defining a specific format. You could have used YAML, XML, etc. Since it may not be obvious how to load the metadata stored in this way, you could add an attribute to the attr of the dataset specifying which way of serializing you have used.




Final thoughts on HDF5

In many applications, text files are more than enough and provide a simple way to store data and share it with other researchers. However, as soon as the volume of information increases, you need to look for tools that are better suited than text files. One of the main advantages of the HDF format is that it is self-contained, meaning that the file itself has all the information you need to read it, including metadata information to allow you to reproduce results. Moreover, the HDF format is supported in different operating systems and programming languages.

HDF5 files are complex and allow you to store a lot of information in them. The main advantage over databases is that they are stand-alone files that can be easily shared. Databases need an entire system to manage them, they can’t be easily shared, etc. If you are used to working with SQL, you should check the HDFql project [https://www.hdfgroup.org/2016/06/hdfql-new-hdf-tool-speaks-sql/] which allows you to use SQL to parse data from an HDF5 file.

Storing a lot of data into the same file is susceptible to corruption. If your file loses its integrity, for example, because of a faulty hard drive, it is hard to predict how much data is going to be lost. If you store years of measurements into one single file, you are exposing yourself to unnecessary risks. Moreover, backing up is going to become cumbersome because you won’t be able to do incremental backups of a single binary file.

HDF5 is a format that has a long history and that many researchers use. It takes a bit of time to get used to, and you will need to experiment for a while until you find a way in which it can help you store your data. HDF5 is a good format if you need to establish transversal rules in your lab on how to store data and metadata.
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When you start developing software, it is of utmost importance to have an isolated programming environment in which you can control precisely the packages installed. This will allow you, for example, to use experimental libraries without overwriting software that other programs use on your computer. Isolated environments allow you, for example, to update a package only within that specific environment, without altering the dependencies in every other development you are doing.

Python provides a very convenient tool called Virtual Environment that allows you to do exactly what was described. The instructions are slightly different depending on the operating system that you use, but they are easy to adapt from one to the other. To install Virtual Environment you can do it with pip, the package manager of Python. Remember that sometimes you may have more than one version of pip in your computer, in the same way, you may have more than one version of Python. For example, if you are using Python 3, you would type in the command line:

pip3 install virtualenv





If you are on Linux, you may need to add sudo to the command: sudo pip3 install virtualenv, depending on how you have installed Python. This is the last installation that you do system-wide. From now on, everything else will happen within a Virtual Environment. It is a common practice to encapsulate projects in folders that also contain the virtual environment. You have to be sure, however, that you don’t add your virtual environment folder to version control, or you will end up having huge repositories.

mkdir myproject
cd myproject
virtualenv venv -p python3





The first line creates the folder for the project and then we move into it. In the last line, we create the virtual environment within a folder called venv and using a specific version of Python, in this case it is  python3. Now it is time to activate the virtual environment. On Linux you would do:

source venv/bin/activate





while on Windows the command would be (pay attention to the .\ at the beginning):

.\venv\Scripts\activate





If everything went well, you will see that a (venv) appears at the beginning of the command line. Now you are working inside the Virtual Environment called venv and all the packages you install are going to be stored within it. Let’s install a package to see how it works.

pip install Flask==1.0





The command will install a very specific version of Flask, which is not the most recent one. One of the useful aspects of virtual environments is that they allow you to keep track of all the packages that you have installed, including their versions. If you execute this command:

pip freeze





You will see all the installed packages. You should see that you have installed not only Flask, but all of its dependencies, each one with a specific version. It is wise to output the results to a file that you can use later on for automatically installing all the requirements of your project:

pip freeze > requirements.txt





If you open the file requirements.txt you will notice that it contains a list with all the packages from venv. To see the full potential of Virtual Environment, let’s create a second one. First, we need to deactivate the one we are working on now by running:

deactivate





And now we repeat the step above to create a new environment, but with a different name:

virtualenv test -p python3





And we activate it:

source test/bin/activate





or for Windows:

.\venv\Scripts\activate





If we run again pip freeze you will notice that your environment is empty. We can install all the packages contained in the requirements.txt file by simply running:

pip install -r requirements.txt





If you check again with pip freeze you will notice that you have exactly the same packages than in the venv environment. You can upgrade Flask, for example:

pip install --upgrade Flask





And if you run again pip freeze you will notice that the version of Flask has changed. Repeat the steps mentioned above in order to deactivate test and activate venv. You will see that the version of Flask stayed at 1.0 and was not upgraded.

Of course, you can run the freeze command outside of any virtual environment to see all the packages installed in your computer. It is a very useful way of keeping track of the packages that may need an upgrade or that you no longer use.


How does the Virtual Environment Work

When you run programs from the command line, your operating system needs to know where to find them. The location of the programs in Windows and Linux is radically different, but they both are able to understand that when you type python in the command line, you want to start the Python interpreter. In order to achieve this, operating systems know where to look for programs thanks to the so-called environmental variables. The PATH is one of those variables that stores a list of folders where to look for programs.

When you work in a virtual environment, all that you do is to replace the relevant variables. In this way, when you run python in the command line, it will first find the one that corresponds to the virtual environment. For example, imagine that you have two different versions of Python, let’s say python (for Python 2) and python3 (for Python 3). When you create a virtual environment, you can specify which version of python to use by adding the option -p at the end. In the examples above, we have used python3, and therefore every time we type python in the virtual environment, we will be actually triggering python3.

But that is not all. If you navigate to the folder of the virtual environment, you will see a folder called bin, where actually the executables for Python and Pip are located. In this way, you are isolated from the computer. If the OS decides to upgrade from Python 3.4 to Python 3.6, for example, you will still have the proper version in your virtual environment. If you navigate to the lib folder and go inside the python folder, you will find the site-packages, which are all the packages installed by pip.

If you have compiled programs that you want to use, in principle you can put them into the bin folder. If you have Python packages that are not installed through pip (such as PyQt4), you can install them system-wide and then just copy the appropriate folder into your virtual environment.


Be careful with name clashes

It is common that some python packages also generate entry points, i.e. commands that can be triggered directly from the command line. For example, if you are inside your virtual environment, you can run flask directly from the command line. This behavior is very useful, but it can easily collide with packages installed system-wide.

Imagine you installed Flask in your system, and then you start working in a virtual environment that doesn’t have Flask installed. If you run flask it will work, but it will be using the version from your OS. This is something very easy to miss when dealing with more complicated packages such as the Jupyter notebook or sphinx for building documentation.

There is no one solution that fits all. It is important for you to be aware of the different problems that may arise when you run programs directly from the command line. Especially Linux/Mac users should be aware that when using the package manager and installing, for instance, Jupyter, you will also create the proper links in the bin directory, allowing you to run jupyter notebook directly. However, if you install it through pip, there are no entry points. Therefore, if you just type jupyter notebook,  you will use the system one. To overcome this, you can use the following command:

python -m jupyter notebook





This will guarantee that you are going to use the package installed through Pip and not the one installed by your system.






Conclusions

It is almost impossible to overestimate how useful the Virtual Environment is. It will help you stay organized and out of conflicts when you develop software, and it will also avoid problems when you are installing different libraries that you want to test. It doesn’t matter if it is for the lab computer or for analyzing data, if you keep your programs compartmentalized, you can be sure that they will all run properly, regardless of their specific needs.

Remember, every time you are about to start a new project, regardless of what it is, you should start by creating an appropriate Virtual Environment for it. In this way, you can be certain of the long-term prosperity of the code you write, regardless of where it will bring you.
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Decorators are a very useful programming pattern that allows changing the behavior of functions with little refactoring. Decorators allow developers to abstract common options from functions, but mastering their use in Python can be challenging. In this article, we are going to go in depth regarding different options when implementing decorators. The topics covered are:
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In a previous article on the use of decorators to validate user input, we have seen just the very beginning of what decorators are able to provide to the developer. Let’s first recap what we saw earlier. We can define a decorator as a function that will take as input another function. We can use it to check the input of the latter, for example:

def check_positive(func):
    def func_wrapper(x, y):
        if x<0 or y<0:
            raise Exception("Both x and y have to be positive \
            for function {} to work".format(func.__name__))
        res = func(x,y)
        return res
    return func_wrapper





The function check_positive checks that the inputs of a function are all positive before actually calling the function. To use it, we would do something like this:

@check_positive
def average(x, y):
    return (x + y)/2

a = average(1,2)
print(a)
b = average(1, -1)
print(b)





In the first case, the function would work, giving as output 1.5, while in the second case it would raise an exception because one of the arguments is not positive. If you can’t understand the code above, you should check the first article published on decorators.


Docstrings with decorators

This example works fine, but it already shows an issue that for larger projects is very relevant: docstrings, i.e. the documentation of functions, methods, and classes, stop working when using decorators like above. Let’s add documentation to the function average, like this:

def average(x, y):
    """Calculates the average between two numbers."""
    return (x + y)/2





The string right after the definition of the function and starting with the triple quotes """ is used for building the documentation of projects and is also used with the help command:

>>> help(average)
average(x, y)
    Calculates the average between two numbers.





This is very useful when working with libraries developed by others. It also allows you to build documentation, such as the one you find for numpy [https://docs.scipy.org/doc/numpy-1.14.2/user/quickstart.html], but we will cover this in a later tutorial. However, if we use a decorator, the behavior changes:

@check_positive
def average(x, y):
    [...]





The [...] means that there is code being suppressed for brevity. If again we try to get the help of our function:

>>> help(average)
func_wrapper(x, y)





As you can see, the docstring of the function average was replaced by the docstring of the wrapper, which in the example above is empty. What we can do to avoid this problem is to pass the docstring and the name of the function to the name and docstring of the decorator. Like this:

def check_positive(func):
    def func_wrapper(x, y):
        if x < 0 or y < 0:
            raise Exception("Both x and y have to be positive for function {} to work".format(func.__name__))
        res = func(x, y)
        return res
    func_wrapper.__name__ = func.__name__
    func_wrapper.__doc__ = func.__doc__
    return func_wrapper





And if we repeat the steps above, we see that the help command is giving the expected output. We can also add a docstring to the decorator:

def check_positive(func):
    """Decorator to check that the inputs of a function are positive"""
    [...]





As with many things in Python, this is not the only option but is the one that allows you to see how some of the internals work, such as the __name__ and __doc__ properties. Another option is to use a built-in decorator from Python that would allow you to do exactly what we have done but in one single line:

The highlighted lines are the ones that changed compared to the previous example. Again, the help command is working as expected. In principle what the decorator @wraps does is the same as setting the __name__ and __doc__ properties. Now you start seeing that the uses of decorators are virtually endless.




Arguments in decorators

Imagine that you want to be able to check that both arguments in a function are higher than a parameter, not necessarily 0. This would imply that the decorator takes one argument. Let’s see first what do we want to achieve and then how to do it.

@check_above(2)
def average(x, y):
    return (x + y)/2





We expect the function average to work only if both x and y are larger than 2. This is very useful when you are communicating with a device, for example, and you want to be sure that you are passing values which are allowed. However, the decorator that we defined earlier takes as an argument only the function to be decorated and it will fail if we add anything else. Solving this is a bit more involved because it requires a function that returns a decorator. We can do the following:

def check_above(threshold):
    def wrap(func):
        @wraps(func)
        def func_wrapper(x, y):
            if x < threshold or y < threshold:
                raise Exception("Both x and y have to be larger than {} \
                for function {} to work".format(threshold, func.__name__))
            res = func(x, y)
            return res
        return func_wrapper
    return wrap





Let’s see step by step what is going on. The function check_above returns the decorator called wrap. Therefore, technically, the function will be decorated with wrap and not with check_above, but now we can use the parameter threshold. We have translated everything one layer deeper, but the behavior is essentially the same. Note that now you check that both x and y are above the threshold. If you try to calculate the average like this:

average(1, 2)





it will raise the exception because one of the values is not above the specified threshold.




When are decorators executed

There is something very important to note: both decorators defined earlier, check_positive and check_above are actually executed right when defining the average function. You can test it by adding a print statement, like this:

def check_positive(func):
    print('Checking if it is positive')
    @wraps(func)
    def func_wrapper(x, y):
        if x < 0 or y < 0:
            raise Exception("Both x and y have to be positive \
            for function {} to work".format(func.__name__))
        res = func(x, y)
        return res

    return func_wrapper





Whenever you import the module that contains the average function, you will see:

>>> from utils import average
Checking if it is positive





This behavior may not be completely expected nor desired. For example, imagine that you use a decorator that checks the status of a device before allowing the user to send a new command to it. If you place the verification routine outside of the function wrapper, it will be triggered when you import the function and not when you execute it. This can give rise to a lot of undesired errors because it is understandable that a user is importing the needed functions first and then starting the communication with a device.

On the other hand, being able to run code before the function is executed, opens different doors. For example, you could register all the available functions. Check the following example:

# utils.py
from functools import wraps

func_registry = []

def register(func):
    func_registry.append(func.__name__)
    @wraps(func)
    def func_wrapper(*args):
        return func(*args)
    return func_wrapper

@register
def average(x, y):
    return (x + y)/2

@register
def geom_average(x, y):
    return (x*y)**0.5





Now you can use it in the following way:

>>> from utils import average
>>> average(1, 2)
1.5
>>> from utils import func_registry
>>> for f in func_registry:
...     print(f)
...
average
geom_average





With this simple code, you already see that not only average, but also geom_average is decorated with @register. This is very useful if, for example, you want to have a list of a specific set of functions. Imagine that you are developing a driver for a device, and some of the methods are equivalent to buttons, i.e., you trigger an action by pressing it, but no input is required and no output is generated. Switch on, Switch off, Auto calibrate, etc. It would be handy to have a list of all these methods, in order to display them to an end-user, for example.

When you start designing decorators, especially if you are planning to have other developers to use them, you have to be aware that some behaviors are not always obvious to everybody. Documenting is crucial to have reliable and maintainable libraries. Mixing the execution of code with the definition of a function may give a lot of headaches to novice developers and may become a nightmare to debug later on.




Decorators for methods in classes

So far we have covered how to use decorators for functions, but more often than not you will find yourself using decorators for methods in classes. For example, you would like to use the check_positive like this:

# operations.py
class Operations:
    @check_positive
    def average(self, x, y):
        return (x + y)/2





I know that a class like that makes no sense at all, but it is only an example, so please bear with me. If you want to use this class, you will face an error:

>>> from operations import Operations
[...]
TypeError: func_wrapper() takes 2 positional arguments but 3 were given





When we defined the check_positive decorator, we explicitly used two arguments for the func_wrapper, x and y. However, when we work with methods, there will be one more argument, the self. There are different ways of solving this problem. On one hand, you could adapt the decorator in order to accommodate for the extra input, but then the decorator will stop working with normal functions. Of course, you could define a new decorator just for methods, but you would end up duplicating the code, and you should try to avoid that.

One more general solution would be to use a variable number of arguments for the decorator. This would be the idea:

from functools import wraps

def check_positive(func):
    @wraps(func)
    def func_wrapper(*args):
        for arg in args:
            if type(arg) is int or type(arg) is float:
                if arg < 0:
                    raise Exception("Method {} takes only positive arguments".format(func.__name__))
        return func(*args)

    return func_wrapper





Now you can see that the decorator became more complex than before. First, the func_wrapper takes *args as the argument, and no longer explicitly x and y. The *args parameter is a good subject for a next tutorial, what you should understand by now is that it makes a list out of all the inputs of the function, regardless of how many they are. This is what allows us to iterate through them by doing for arg in args.

For every argument in the function, we have to check whether they are numbers or not, i.e., if the type is either int or float. This prevents us from checking if self is positive or not, which would raise an exception. If the checks pass, we just return the original function func with the same arguments *args which were originally used. You can go ahead and try this decorator with either a method ìn the Operations class or with a function. Moreover, you can now try it with a function that takes three numbers as input and it will still work.




Classes as decorators

So far, we have seen that you can use a function to decorate another function or method. However, that is not the only option. Classes can be used as decorators as well, and this opens an entire realm of possibilities. What we have seen so far is that when you add a callable with a @ just before another callable (i.e. a method or a function in our context), that function will be passed as an argument to the decorator. When constructing classes, you can also pass functions as arguments. For example:

class Decorator:
    def __init__(self, func):
        print('Decorating {}'.format(func.__name__))
        self.func = func

@Decorator
def average(x, y):
    return (x + y)/2





If you execute the code above you will see:

Decorating average





However, if you try to use the average, you will see an error:

>>> average(1, 2)
[...]
TypeError: 'Decorator' object is not callable





This is actually expected. What is happening is that the function average is actually being turned into a Decorator class. The code would be equivalent to doing something like this:

average = Decorator(average)





However, after the class has been instantiated, Python doesn’t know what does it mean to execute it. We need to explicitly add this behavior:

class Decorator:
    def __init__(self, func):
        print('Decorating {}'.format(func.__name__))
        self.func = func

    def __call__(self, *args, **kwargs):
        return self.func(*args)





With this change, we have instructed Python what does it means to call the object, i.e., to do average(...). If we run it again, it will work:

>>> averge(1, 2)
1.5





Remember that, just as before, the instantiation of the Decorator class is happening when defining the average, and therefore you will see the line Decorating average when you import average. On the other hand, you have transformed your function into a class:

>>> type(average)
<class '__main__.Decorator'>





How you can leverage the possibilities of using a class instead of a function for decorating depends on the work you are trying to achieve. Remember that the main use of classes is when you need to preserve state. For example, imagine you would like to store every pair of values on which you have calculated the average. You can easily turn this idea into a cache system, avoiding to repeat processes for known arguments.




Decorators for classes

We have seen that any callable can be a decorator of any other callable. That is why a function can be a decorator of another function or method. Also, because a class is a callable, it can be a decorator of a function or method. The last missing combination is to decorate classes. With what you know so far, you can already anticipate what is going to happen. Imagine you want to do this:

@Decorate
class MyClass:
    def __init__(self):
        print('My Class')





What you have to remember is that Decorate needs to accept MyClass as input. Moreover, we need to actually instantiate the class when we do:

my_class = MyClass()





Putting all the ideas together, the decorator will look like this:

def Decorate(cls):
    print('Decorating {}'.format(cls.__name__))
    def class_wrapper(*args):
        return cls(*args)
    return class_wrapper





What will happen is that the class will be passed as the argument of Decorate. We will print that we are decorating the class, just to show that it is actually working. The Decorate function needs to return another callable object, in the example above is a function called class_wrapper. This function will be responsible for instantiating the class. Remember that when you use decorators, you are actually replacing what happens when you do MyClass() by what happens when you do class_wrapper(). Therefore, if you decorate the class, you will see that its type changed:

>>> type(MyClass)
<class 'function'>





The main point here is that the function will return an object. This allows you to instantiate the class as always, regardless of it having or not the decorator:

>>> my_class = MyClass()
My Class





Decorating classes is a bit of a corner situation. To be honest, I don’t imagine a lot of scenarios where you would like to decorate a class, but still, I will give you an example. Imagine that you want to add a new method to every decorated class. A method that will calculate the average between two numbers. What you have to do is to alter the cls variable within the class_wrapper:

def Decorate(cls):
    def class_wrapper(*args):
        def average(cls, x, y):
            return (x + y) / 2
        setattr(cls, 'average', average)
        return cls(*args)
return class_wrapper





We have defined the function average that takes three arguments: a class and two numbers. And then we use setattr to add the method to cls and we call it 'average'. Now, MyClass will be able to calculate the average of numbers even if the method was not defined in it:

>>> my_class = MyClass()
>>> res = my_class.average(1, 2)
>>> print(res)
1.5








Conclusions

In this tutorial, we have covered a lot of different options when working with decorators. Depending on the kind of projects you are working on, you may not find yourself in the situation of needing to develop decorators, however, it is always useful to be aware of one extra possibility. Decorators are very useful tools when a library is going to be used by other developers.

Two libraries that make heavy use of decorators are Flask [http://flask.pocoo.org/] and Lantz [https://github.com/lantzproject/]. Therefore, even if you don’t develop your own decorators, it is always important to understand how they work.

You can find the example code for this tutorial [https://github.com/PFTL/website/tree/master/example_code/04_how_to_use_decorators_2] on Github, as well as the text [https://github.com/PFTL/website/blob/master/content/blog/04_how_to_use_decorators_2.rst]. If you find any mistakes, don’t hesitate to submit a pull request or open an Issue.
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In the lab, it is common to find different computers connected to specific devices. For example,when you keep older PCs which are able to communicate with very specific hardware. You may also have different computers when there are mobile instruments that you share among different users. In these situations it becomes very useful to be able to exchange information between your main computer and a secondary one.

A computer network utilizes two elements: a server and a client. The server receives the messages you send, interprets them and returns values if asked to. The client communicates with the server, sends commands and receives data. Internet works this way: when you entered this website, you used a browser, the client, to access content on a server. Communicating with a device connected to another computer is, therefore, not different from what we have just described.

If you look around for Python frameworks to build web applications, you will find several but two are going to stand out: Django [https://www.djangoproject.com/] and Flask [http://flask.pocoo.org/]. Django is a complete package for developing web applications, but a total overkill for our purposes. Flask is slightly more barebones, but it provides all the functionality that we are looking for: to create a server that will take inbound communication and act accordingly, for example by triggering a measurement on a device.

Installing Flask doesn’t take much more than a pip command:

pip install Flask





After that we can build our first very simple app to see that everything is working fine:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def index():
   return "The Server is up and running"

app.run()





If you run the file, open a browser, and head to localhost:5000 you will see a message saying that the server is up and running. A lot of things are happening that are worth discussing in detail. We start by importing Flask and creating an app. Our app is very powerful; one of the things it allows us to do is to trigger specific functions when we head to specific locations on the server. These are called routes; when we define a route and we add the string '/' it means that the function following it will be triggered whenever someone enters to the root of the server (/). Our example only returns a message saying that everything went well.

The last line runs the app. This is an infinite loop that will open a port at localhost for us to test our application. If you are familiar with how PyQt works, you will notice the similarities. Once the app is running, you can point the browser to the address that appears on your command line, most likely localhost:5000. When you enter to that address, you are triggering the route('/') and therefore you will get the message The Server is up and running.

So far, both the server and the client are the same device. We will see later how to improve on this, but for the time being, you can believe that everything will work exactly the same, even when communicating through the network. It is possible to trigger other actions directly on the server side, not only to return strings. To test it, we can use a print statement. Let’s re-write the index() function:

[...]

def index():
   print('Index Triggered')
   return 'The server is up, running, and printing statements'

[...]





If you run the server file again and head your browser to localhost:5000 you should see not only the string appearing on your screen, but also a message will appear on the command line where the server is running. The print function is being triggered on the server. We could use more complex functions than print. For example, we could trigger a measurement on a device.


Note

If you are not dealing with instruments but you would like to trigger computer-intensive tasks on a remote computer, you can use the same approach explained here. You can then leverage computers with more memory or better processors, or you can even make a parallel execution of your code without leaving your Jupyter notebook.



Let’s assume you have a device like the one we developed in our earlier post How to Write a Driver with Lantz. The device is an oscilloscope with several built-in methods, including idn for getting its serial number, and datasource to set and get the channel used for an acquisition.  We would like to trigger some of those methods when we head to specific addresses on our browser. Later on, we will change the browser by a custom-made client that will simplify our workflow. We begin by initializing the device and we make it available to the app:

The core is the same as before, but we have added some lines for the device. We import the needed classes and we initialize the communication with the device; you should adapt the highlighted lines with your own device. The new route now establishes that if you head to localhost:5000/idn, the serial number of the device is going to be returned. This action is much more complex than printing on the server or returning a simple string. What we are actually sending is a command to a device, waiting for it to return a value and then we are sending it back to the browser. With this simple example, you can already see that we are doing virtually everything that a device can handle. Of course, devices also take inputs, and we should take into account this. Basing ourselves on the example of an oscilloscope with Lantz, we could change the datasource property of the device like this:

[...]
@app.route("/datasource/<int:source_id>")
def datasource(source_id):
   dev.datasource = source_id
   return(dev.datasource)





The lines above show a very simple way of sending variables through a browser. The route takes more complex structures than plain strings. <int:source_id> will take an integer after the datasource/ and it will pass it as an argument to the function below. The function datasource in our server, therefore, should take exactly one argument, source_id, and we use it for changing the datasource of the device. Now, if you head your browser to localhost:5000/datasource/1 we will change the source to 1, we can do the same with 2, 3, etc. Bear in mind that not all values are valid with the device. Check what happens if, for example, you send a value outside the range of what is possible.

Communicating with our devices through the browser may not be the most practical approach. Instead, we can build a special program called Client that will handle the sending and retrieving of information from the server. When we have control on both the server and the client side software, we can easily control the data that is being exchanged. When we don’t have control over one of the two sides, we have to base ourselves on available standards; for example, the data that a browser can handle is limited, the instructions a server can receive are few, etc. We are going to base our client on a common Python library called requests:

import requests

addr = 'http://localhost:5000'
r = requests.get(addr + "/idn")

print(r.content)





If you run the script written above (while the server script is running on a different command line), you will see that what gets printed on screen is the identification of the device. Basically, what you have achieved is the exchange of information from a device hooked to a server with a client not directly bound to that device. You could build a class around the requests. If you want, for example, a client exclusively for the oscilloscope, we can do the following:

import requests


def ClientOscilloscope():
   def __init__(self, addr):
      self.addr = addr

   def idn(self):
      r = requests.get(self.addr + '/idn')
      return r.content

if __name__ == '__main__':
   c = ClientOscilloscope('http://localhost:5000')
   print(c.idn())





The applications of this approach are multiple and not limited to communicating over the network. Imagine that you want to share the information of a device with multiple applications; instead of initializing the communication with the device in each application (that will almost certainly lead to issues), you can communicate through a server, even if on the same computer. You can test this idea if you access localhost from two different browsers. You can get the idn of your device twice without issues. You can also run the client script from two different command lines, and you will see that your server can handle several requests at the same time without issues and without blocking the device; the communication is initialized only once, at the beginning of the server script.

Being able to access the server from a different computer depends on the configuration of your network. First, you need to know the ip address of your computer. Remember that an ip is a unique number that identifies your connection to a network; if you are connected to the Internet, you will have two different numbers, the ip of your computer within a local network, and the public ip that is going to be shared by all the other computers on the same network.

Let’s assume that you want to control a device within a local network in your lab. The only thing you need to do is to run the server on the computer you wish to use; most likely you are going to desire a specific port number for the inbound communication. You can do so with this simple command:

app.run('0.0.0.0', 1234)





which will allow you to run the server on port 1234. You have to check that the port is not used by other processes; for example, port 80 is used by HTTP connections. You can aim for higher numbers like 10000 and above, since those are most likely not used and open within your network. If you now head the browser of another device to ip:1234/idn you should see the identification number of your device. This procedure is mobile-friendly; you could use your phone to trigger measurements, without developing any apps, just using your mobile browser.

Accessing a computer from outside the local network is possible, but it normally depends on the policy of the institution where you work. The easiest way is to have port forwarding, for example when you access public_ip:specific_port, the connection is forwarded to a specific computer within the local network. To configure it, you need help from the administrator of the network and as a general safety rule, they will never allow such a thing. If you make a mistake, you are giving access to anyone who finds out which port to use.

The possibilities are limitless. If you want to see how to configure a more complex Server/Client strategy that handles any number of devices, you can check Uetke’s Instrument Server [https://github.com/uetke/UUServer]. In this project, the server is an extension of Flask; we have defined some common routes to communicate with clients. We have also made use of JSON as a way of exchanging structured information between client and server. The repository also includes a client and a fake instrument to test the behavior.

The examples we have shown above are very basic but important to understand, if you want to achieve more complex functionality. For example, if you want the server to stay responsive while triggering tasks that take long to execute on a device, you have to implement threads. That is a more extensive discussion than what we can have here, but you can find an implementation example here [https://github.com/uetke/UUServer/blob/master/instserver/server.py]. There are some other packages that can be used for threading on web servers. Those packages were created precisely to handle async tasks. They are aimed at web development but could be useful also for applications with experiments. You can check for example, Celery [http://docs.celeryproject.org/en/latest/] and RabbitMQ [https://www.rabbitmq.com], although they are fairly complex, they can be exactly what you are looking for.

If you need help developing a code for communicating over the network, don’t hesitate to contact us [https://www.uetke.com/contact]. We can custom build a solution to your problem. If you would like to learn about network communication and much more, you can also consider our Advanced Python For The Lab Course [https://www.uetke.com/courses/advanced/].
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Lantz is a package written by several researchers who wanted to have a framework to build instrumentation on Python. It is open source and hosted on Github [https://github.com/LabPy/lantz]. Their description is very clear:


Lantz is an automation and instrumentation toolkit with a clean, well-designed and consistent interface. It provides a core of commonly used functionalities for building applications that communicate with scientific instruments allowing rapid application prototyping, development and testing. Lantz benefits from Python’s extensive library flexibility as a glue language to wrap existing drivers and DLLs.




Lantz was built with one objective in mind: make easier to researchers the development of drivers for their devices. With time the Lantz group has built an entire framework that handles different types of connections, such as GPIB, Serial, Ethernet, etc. and much more. The values generated are kept in a cache that prevents unnecessary communications with the devices. Plus, the syntax is simple and allows to check for limits and units before sending commands to the real device.

Let’s see step by step how to build a driver for a common device, for instance, a Tektronics Oscilloscope [https://www.tek.com/oscilloscope/tds1000-manual]. The first thing we need to do is to import the needed modules from Lantz.

from lantz.feat import Feat
from lantz.action import Action
from lantz.messagebased import MessageBasedDriver





We will see how to use each one of them. We first define the class:

class TDS1012(MessageBasedDriver):

MANUFACTURER_ID = '0x699'
DEFAULTS = {'USB': {'write_termination': '\n',
                        'read_termination': '\n',
                        'timeout': 5000,
                        'encoding': 'ascii'
            }}





We inherit from the general MessageBasedDriver because the Oscilloscope communicates through an exchange of text commands. We define the Manufacturer Id because it is one of the easiest ways of identifying USB devices. Beware that if there were two different Tektronix devices connected, the program will not be able to differentiate between them, you should provide more information as I will show below.

The second important step is to define the defaults for the communications. In this case, we are setting the defaults for a USB communication. The write and read terminations are the new line character and we set the encoding to ascii; all this information can be found in the manual. We set the timeout to 5 seconds; if a command takes longer than that to execute it will stop it.

Now we are ready to start developing some more interesting code for our driver. Normally, one of the first commands we can exchange with a device is to ask for its identification. We can achieve it like so:

@Feat()
def idn(self):
   return self.query('*IDN?')





Now we see the use of the first decorator, called Feat. Decorators in Python are complex, but they can be described mainly as functions that take as arguments other functions. When we use the Feat decorator a lot of things are going to happen internally in Lantz, but we shouldn’t worry too much for the time being. What you should remember is that Features are all those elements in a device that will return a value or that can be set to a value. The identification of the oscilloscope is one of such features. Now we can already use the class:

with TDS1012.via_usb() as osc:
   print(os.idn)





And now we see the magic of Lantz happening. First, the fact that we can use the with statement means that some methods were defined for us under the hood; these methods are in charge of initializing and finalizing the communication with the device, in order to free the resource right after the statement finishes. The second important thing to notice is that we initialize the device with the via_usb() method. Of course, it could have been via_serial(), for example, but let’s keep with the USB for now.

The second important thing to note is that the method idn is treated as a property of the device itself. This is achieved through the Feat decorator. If you are an experienced Python programmer you probably know how to achieve this behavior for your own classes; in Lantz, you shouldn’t worry too much about understanding it, but you have to learn just how to use them.

Now, imagine you want to trigger the device; that doesn’t count as a Feature because you are not setting a specific value nor getting a value. That is the situation where you would use an Action decorator:

@Action()
def trigger(self):
   self.write('*TRG')





In this case, we are only writing to the oscilloscope and therefore we are not awaiting any output value after the action. Action decorators don’t have much magic behind; they can be thought as the buttons on a device; a button is pressed and an action is triggered.

We have so far only discussed a passive Feat, or better called, a read-only only feature. But what happens when we have a feature that actually accepts values; the oscilloscope, for example, can be set to acquire one of two different channels. First, we define the feature to read which channel is going to be read, in exactly the same way than for the idn feature.

@Feat(limits=(1,2))
def datasource(self):
   return self.query('DAT:SOU?')





The first difference to note here is that we have added limits to the feature, in this case, the value it will output will be in the range from 1 to 2 (1 and 2 included). While reading from a device it is not important to know the limits, but when we write, it becomes crucial. The way of setting the value of the data source is like this:

@datasource.setter
def datasource(self,value):
   self.write('DAT:SOU CH{}'.format(value))





Again, if you have ever worked with properties of classes the syntax may result familiar, but if you haven’t don’t worry too much. Once we have defined the method datasource as a Feat, we can change its value by defining a setter. Now, pay attention here, the decorator we use is @datasource.setter, because the function that comes after is exactly that, instructions on how to set the datasource feature. The method defined right after is the function that is going to be called when we do something like:

dev.datasource = 1
print(dev.datasource)
dev.datasource = 2
print(dev.datasource)
dev.datasource = 3 # This will raise an Exception





Note that it takes one argument, value. The value will be first checked against the limits we established in the Feat declaration, i.e. it should be between 1 and 2. That is why if you try to assign the value 3 to it, it will fail. Because of how we did things, if you send the value 1.5 to the datasource, it won’t fail, but it is not a valid command.


Using Units

One of the most useful utilities of Lantz is the built-in units. The oscilloscope doesn’t provide a lot of good opportunities to work with units but trust me when you are working with other devices they are going to be very handy. When you are reviewing old code it is always hard to remember if the values should be set in nanometers, centimeters and sometimes you don’t want to dig up the manual from an obscure website or cupboard in your lab. Let’s imagine we have a tunable laser, and we want to set the output wavelength to it. Our code would become:

@Feat(units='nm', limits=(1480, 1640, 0.0001))
def wavelength(self):
   return self.query('WA')

@wavelength.setter
def wavelength(self, value):
   self.query('WA%.4f' % value)





We begin by declaring a feature, with units nanometers and some limits. Importantly, we set the step at which we can change the wavelength: 0.1pm. Now, the wavelength setter looks exactly the same as with the oscilloscope. All the magic is going to happen thanks to the Feat decorator at the beginning, converting to the proper units before actually sending the command to the device. To use it, you can just do:

from lantz import Q_

wl = Q_('1500nm')
dev.wavelength = wl
print(dev.wavelength)
wl = 1510
dev.wavelength = wl
print(dev.wavelength)
um = Q_('um')
wl = 1.520*um
dev.wavelength = wl
print(dev.wavelength)
wrong = Q_('1500V')
dev.wavelength = wrong





The first thing we have to do is to import the module Quantity directly from Lantz, which is basically the unit registry from Pint; if this is the first time you hear about Pint, I really suggest that you check out that project [http://pint.readthedocs.io/en/latest/]. We then define a variable wl as a 1500nm quantity and set the laser wavelength to it. The rest of the commands are just to test the different scenarios; for example, when you don’t specify units, Lantz will automatically assume the default units (the ones you set in the @Feat). You can, of course, use other units; I’ve chosen micrometers, but anything that is distance-related would have just worked fine. You could have even used inches. Of course, the program will raise an Exception if you try to pass the wrong units to the wavelength.

The advantage of using units so early in the code (at driver development) is that it will make it clear for the rest of our programs what units are we supposed to use. We don’t need to worry about a user (or even ourselves) confusing nanometers with micrometers, the conversion will happen under the hood. In my experience, however, few people are used to the Pint package and get slightly confused when they have to work with a new type of variable that has both a number and a unit. Anyways, a bit of practice doesn’t heart.




Conclusions

Lantz has seen a rollercoaster of development cycles, from very active to almost abandoned. Lately, it has been hibernating, as you can see by the number of merge requests and issues open that no one has replied to. In any case, the package works reasonably well, but what is more important is that you can learn a lot from their ideas. The use of decorators for communicating with devices, for example, is a great way of simplifying a lot of actions, like checking the limits and the units.

I try to implement the new drivers that I write in Lantz, but I am also realistic and know that for some devices it is better not to depend on it, especially when dealing with very complex systems such as cameras. If you want to explore more I suggest you check also:



	Instrumental, from Mabuchi Lab [http://instrumental-lib.readthedocs.io/en/stable/].


	Storm Control, from Zhuang Lab [https://github.com/ZhuangLab/storm-control].


	Experimentor, by Uetke [https://github.com/uetke/experimentor/tree/develop].







Header photo by Philip Swinburn [https://unsplash.com/@pjswinburn] on Unsplash







          

      

      

    

  

    
      
          
            
  
Controlling a National Instruments Card with Python


	date

	2018-02-21



	author

	Aquiles Carattino



	subtitle

	Don’t depend on Labview; learn how to control National Instruments cards directly with Python.



	header

	{attach}writing-machine.jpg



	tags

	National Instruments, DAQ, Control, NI DAQ, PyDAQmx



	description

	Don’t depend on Labview; learn how to control National Instruments cards directly with Python.





One of the most common devices in a lab is a National Instruments acquisition card, also called a DAQ. As you probably know by now, the default programming environment for such cards is Lab View, but what you may not be aware is that there are libraries for interfacing with other languages. NI provides a common driver to all of their devices called NI-DAQmx and how to use their hardware through the C programming language is well documented [http://zone.ni.com/reference/en-XX/help/370471AA-01/].

Once there is good documentation for one programming language, there are no limits for developers to expand the toolbox into other languages. For National Instruments devices, there is a project called PyDAQmx [https://pythonhosted.org/PyDAQmx/] that ported all the functions to be Python compatible. Since it is a port of the C code, what you should always bear in mind is that you have to check the National Instruments documentation [http://zone.ni.com/reference/en-XX/help/370471AA-01/] and adapt the code to Python.

Let’s see how to get started. Remember that each card has different specifications and therefore some of the options may not be present in your current configuration. Let’s assume we want to read an analog input from our device; you need to know the number that was assigned to your card in order to communicate with it; normally you should have National Instruments software that allows you to configure the number of your card.

import PyDAQmx as nidaq


t = nidaq.Task()
t.CreateAIVoltageChan("Dev1/ai0", None, nidaq.DAQmx_Val_Diff, 0, 10, nidaq.DAQmx_Val_Volts, None)
t.CfgSampClkTiming("", 1000, nidaq.DAQmx_Val_Rising, nidaq.DAQmx_Val_FiniteSamps, 5000)
t.StartTask()





In these few lines of code we have created a new Task and called it t; we have defined an analog input channel for Dev1 and port number ai0. We also configured the timing to be internal, with 1000 samples per second and in total, we want to acquire 5000 samples. We finally trigger the task to start acquiring samples. It is interesting to compare our code to what is documented, so you can learn how to adapt the code to Python.

We first go to the documentation of the method CreateAIVoltageChan [http://zone.ni.com/reference/en-XX/help/370471AA-01/daqmxcfunc/daqmxcreateaivoltagechan/] and the first thing you should notice is that the name is actually different; it is DAQmxCreateAIVoltageChan. The first thing to note is that the DAQmx prefix is dropped in PyDAQmx. Then we can see the arguments that the function takes:

int32 DAQmxCreateAIVoltageChan (
   TaskHandle taskHandle,
   const char physicalChannel[],
   const char nameToAssignToChannel[],
   int32 terminalConfig,
   float64 minVal,
   float64 maxVal,
   int32 units,
   const char customScaleName[]);





Since we are using the task as Python object, we drop the first argument of the function; PyDAQmx takes care of it (notice that we are using the syntax t.CreateAIVoltageChan. Then we have to pass all the other arguments, paying attention to their types. So, where it says char we should pass a String; that is what we do for the channel. In this example, we don’t assign a name to the channel and therefore we leave it as None. Next, we have to define the terminalConfig; if you look at the documentation, you will see that there are different options, for example DAQmx_Val_RSE, DAQmx_Val_Diff, etc. PyDAQmx has all these configurations already defined and we can use them directly as in the example above: nidaq.DAQmx_Val_Diff.

Then it asks for the limits of our analog input; remember that the DAQmx works with units that can be different from volts and that will be defined later on; the limits that we establish here are in those specific units. Setting the limits allows the DAQ card to automatically set a gain to our measurement, therefore increasing the effective resolution of the measurement. The values are automatically converted to the requested type, provided that they are numbers.

When performing a measurement with an NI Card we have to explicitly set its units; it may very well be that you have a thermocouple connected to the analog input and therefore you want to measure Kelvins instead of Volts, or that you have any other transducer plugged. Defining custom scales is an entire chapter and therefore it is much easier to leave them here as volts and do the transformation directly in our code. We use again a built-in option of DAQmx, the nidaq.DAQmx_Val_Volts and the last option is left to None because it is what the documentation asks for in case we set the scale to Volts.


Note

Converting variable types from Python to C or the other way around is handled in different ways by different libraries. PyDAQmx is doing all the work under to hood and that is why we can use an integer instead of a float, for example. But be aware that it will not always be the same; some libraries require to define very specific types.



The other method, CfgSampClkTiming [http://zone.ni.com/reference/en-XX/help/370471AA-01/daqmxcfunc/daqmxcfgsampclktiming/] is used for configuring the clock used to acquire the samples. I leave it up to you to check the documentation and to understand what each argument of the function is doing. In short, I set it to use an internal clock at a rate of 1000 samples per second for a total of 5000 samples (i.e. 5 seconds total acquisition time). The last line simply triggers the task.

The next step is to read the data that was acquired. Remember that it takes 5 seconds for the acquisition to complete; the DAQmx functions are non-blocking, meaning that the execution of your program will not halt at each execution. For reading from the card we will use another method defined within the Task object; you will also need to use numpy for this example to work.

import numpy as np

[...]

data = np.zeros((5000,), dtype=np.float64)
read = nidaq.int32()
t.ReadAnalogF64(5000, 5, nidaq.DAQmx_Val_GroupByChannel,
   data, len(data), nidaq.byref(read), None)





Reading from the NI DAQ has a structure more similar to how proper C code looks like and is quite different from how Python code works. The first thing to note is that there is no return; we are not doing anything like data = t.ReadAnalogF64(). Let’s see it step by step. The documentation [http://zone.ni.com/reference/en-XX/help/370471AA-01/daqmxcfunc/daqmxreadanalogf64/] is useful but doesn’t explain how the actual syntax works. Again, we skip the first argument, the task handler because we are using the object-oriented-style.

We define how many data points per channel we want to read; if we were acquiring more than one channel, it is important to notice that it is not the total number of points. We set the timeout in seconds, in order for the function to stop waiting in case there are not enough data points available. Then we set how to group the values in case we are reading from more than one channel. Remember that each channel is read sequentially, so it would be Chan1_1 -> Chan2_1 -> Chan3_1 -> Chan1_2 -> Chan2_2 -> Chan3_2 -> Chan1_3 -> etc. If we group them by channel, they will be returned as all the measurements from Chan1, all the measurements from Chan2, etc. I prefer it this way because it works well with numpy’s reshape.

Now, the interesting part; we pass as an argument data, which was defined few lines before as an empty numpy array. In the documentation, it is defined as The array to read samples into. This is a very common way of working with functions in C; we first create the memory structure that will hold the output of the function, in this case, a numpy array with 5000 elements. Whatever is present in the array will be overwritten by the read function. The next argument is the actual number of samples read from each channel; in other words, the length of the data array.

The final argument is the read integer, that was also defined few lines before. It will hold the total number of data points read per channel. Note that we are not simply passing the read integer as an argument to the function, but we are using a method called byref. This is typical when working with external libraries written in C. It basically means that you are passing the reference to an object and not the object itself; you are letting the function know where in the memory is located that specific variable. In the end, the effect is the same: the variable will hold the information you need.

Now you can plot your data, save it or do whatever you like with it. The read function has a lot of options that I haven’t fully covered, but that you can easily check the documentation. The complexity arises because the function covers a lot of different scenarios with few inputs. For example, when you are continuously acquiring and you wish to download as many data points as there are available but you cannot know beforehand how many. It can also take care when you use an external trigger and you don’t know how long it will take to complete an acquisition.

Even though National Instruments cards were not designed to be used with Python, there can still be used in a variety of projects without many complications. The use of a common API for all the cards makes them ideal because exchanging them doesn’t require a single change in the code. However, each card can have very different capabilities, for example, the acquisition rate or the number of simultaneous tasks that it can handle.

More Information: PyDAQmx Tutorial [https://pythonhosted.org/PyDAQmx/usage.html], NI-DAQmx C Reference Help [http://zone.ni.com/reference/en-XX/help/370471AA-01/]
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Python is an object-oriented programming (OOP) language. Object-oriented
programming is a programming design that allows developers not only to
define the type of data of a variable but also the operations that can
act on that data. For example, a variable can be of type integer, float,
string, etc. We know that we can multiply an integer to another, or
divide a float by another, but that we cannot add an integer to a
string. Objects allow programmers to define operations both between
different objects as with themselves. For example, we can define an object
person, add a birthday and have a function that returns the
person’s age.

At the beginning it will not be clear why objects are useful, but over
time it becomes impossible not to think with objects in mind. Python
takes the objects ideas one step further, and considers every variable
an object. Even if you didn’t realize, it is possible that you have
already encountered some of these ideas when working with numpy arrays,
for example. In this chapter we are going to cover from the very basics
of object design to slightly more advanced topics in which we can define
a custom behavior for most of the common operations.
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Defining a Class

Let’s dive straight into how to work with classes in Python. Defining a class is as
simple as doing:

class Person:
    pass





When speaking it is very hard not to interchange the words
Class and Object. The reality is that the difference
between them is very subtle: an object is an instance of a class. This
means that we will use the word classes when referring to the type of variable,
while we will use object to the variable itself. It is going to become clearer
later on.

In the example above, we’ve defined a class called Person that doesn’t do
anything, that is why it says pass. We can add more
functionality to this class by declaring a function that belongs to it. Create a file called person.py and add the following code to it:

class Person:
    def echo_name(self, name):
        return name





In Python, the functions that belong to classes are called methods. For
using the class, we have to create a variable of type person. Back in the Python Interactive Console, you can, for example, do:

>>> from person import Person
>>> me = Person()
>>> me.echo_name("John Snow")
John Snow





The first line imports the code into the interactive console. For this to work, it is important that you trigger python directly from the same folder where the file person.py is located. When you run the code above, you should see as output John Snow. There is also an
important detail that was omitted this far, the presence of
self in the declaration of the method. All the methods in
python take a first input variable called self, referring to the class
itself. For the time being don’t stress yourself about it, but bear in
mind that when you define a new method, you should always include the
self, but when calling the method you should never include it.
You can also write methods that don’t take any input, but still will
have the self in them, for example:

def echo_True(self):
    return "True"





that can be used by doing:

>>> me.echo_True()





So far, defining a function within a class has no advantage at all. The
main difference, and the point where methods become handy is because
they have access to all the information stored within the object itself.
The self argument that we are passing as first argument of the
function is exactly that. For example, we can add the following two
methods to our class Person:

def store_name(self, name):
    self.stored_name = name

def get_name(self):
    return self.stored_name





And then we can execute this:

>>> me = Person()
>>> me.store_name('John Snow')
>>> print(me.get_name())
John Snow
>>> print(me.stored_name)
John Snow





What you can see in this example is that the method store_name
takes one argument, name and stores it into the class variable
stored_name. Variables in the context of classes are called attributes
in the context of a class. The method get_name just returns
the stored property. What we showed in the last line is that we can access
the property directly, without the need to call the get_name
method. In the same way, we don’t need to use the store_name
method if we do:

>>> me.stored_name = 'Jane Doe'
>>> print(me.get_name())
Jane Doe





One of the advantages of the attributes of classes is that they can be
of any type, even other classes. Imagine that you have acquired a time trace
of an analog sensor and you have also recorded the temperature of the
room when the measurement started. You can easily store that information
in an object:

measurement.temperature = '20 degrees'
measurement.timetrace = np.array([...])





What you have so far is a vague idea of how classes behave, and maybe
you are starting to imagine some places where you can use a class to
make your daily life easier and your code more reusable. However, this
is just the tip of the iceberg. Classes are very powerful tools.




Initializing classes

Instantiating a class is the moment in which we call the class and pass
it to a variable. In the previous example, the instantiation of the
class happened at the line reading me = Person(). You may
have noticed that the property stored_name does not exist in
the object until we assign a value to it. This can give very serious
headaches if someone calls the method get_name before actually
having a name stored (you can give it a try to see what happens!)
Therefore it is very useful to run a default method when the class is
first called. This method is called __init__, and you can
use it like this:

class Person():
    def __init__(self):
        self.stored_name = ""

    [...]





If you go ahead and run the get_name without actually storing
a name beforehand, now there will be no error, just an empty string
being returned. While initializing you can also force the execution of
other methods, for example:

def __init__(self):
    self.store_name('')

[...]





Will have the same final effect. It is however common (and smart)
practice, to declare all the variables of your class at the beginning,
inside your __init__. In this way you don’t depend on
specific methods being called to create the variables.

As with any other method, you can have an __init__ method with more
arguments than just self. For example you can define it like
this:

def __init__(self, name):
    self.stored_name = name





Now the way you instantiate the class is different, you will have to do
it like this:

me = Person('John Snow')
print(me.get_name())





When you do this, your previous code will stop working, because now you have to set the name explicitly. If there is any other code that does Person(), it will fail. The proper way of altering the functioning of a method is to add a default value in case no explicit value is passed. The __init__ would become:

def __init__(self, name=''):
    self.stored_name = name





With this modification, if you don’t explicitly specify a name when instantiating the class, it will default to '', i.e., an empty string.

Defining default values for parameters in methods has to be handled with care. They are very useful when you expect people to always use the same values and only occasionally to change them. Trying to keep backwards compatibility by declaring default values can make your code look chaotic, so you have to do it only when it is worth doing, and not all the time. When developing, it is impossible not to refactor code.




Defining class attributes

So far, if you wanted to have properties available right after the instantiation of a class, you had to include them in the __init__ method. However, this is not the only possibility. You can define attributes that belong to the class itself. Doing it is as simple as declaring them before the __init__ method. For example, we could do this:

class Person():
    birthday = '2010-10-10'
    def __init__(self, name=''):
        [...]





If you use the new Person class, you will have an attribute called birthday available, but with some interesting behavior. First, let’s start as always:

>>> from person import Person
>>> guy = Person('John Snow')
>>> print(guy.birthday)
2010-10-10





What you see above is that it doesn’t matter if you define the birthday within the __init__ method or before, when you instantiate the class, you access the property in the same way. The main difference is what happens before instantiating the class:

>>> from person import Person
>>> print(Person.birthday)
2010-10-10
>>> Person.birthday = '2011-11-11'
>>> new_guy = Person('Cersei Lannister')
>>> print(new_guy.birthday)
2011-11-11





What you see in the code above is that you can access class attributes before you instantiate anything. That is why they are class and not object attributes. Subtleties apart, once you change the class attribute, in the example above, the birthday, next time you create an object with that class, it will receive the new property. At the beginning it is hard to understand why it is useful, but one day you will need it and it will save you a lot of time.




Inheritance

One of the advantages of working with classes in Python is that it allows you to use the code from other developers and expand or change its behavior without modifying the original code. The best idea is to see it in action. So far we have a class called Person, which is general but not too useful. Let’s assume we want to define a new class, called Teacher, that has the same properties as a Person (i.e., name and birthday) plus it is able to teach a class. You can add the following code to the file person.py:

class Teacher(Person):
    def __init__(self, course):
        self.course = course

    def get_course(self):
        return self.course

    def set_course(self, new_course):
        self.course = new_course





Note that in the definition of the new Teacher class, we have added the Person class. In Python jargon, this means that the class Teacher is a child of the class Person, or the opposite, that Person is the parent of Teacher. This is called inheritance and you will notice that a lot of different projects take advantage of it. You can use the class Teacher in the same way as you have used the class Person:

>>> from person import Teacher
>>> me = Teacher('math')
>>> print(me.get_course)
math
>>> print(me.birthday)
2010-10-10





However, if you try to use the teacher’s name it is going to fail:

>>> print(me.get_name())
[...]
AttributeError: 'Teacher' object has no attribute 'stored_name'





The reason behind this error is that get_name returns stored_name in the class Person. However, the property stored_name is created when running the __init__ method of Person, which didn’t happen. You could have changed the code above slightly to make it work:

>>> from person import Teacher
>>> me = Teacher('math')
>>> me.store_name('J.J.R.T.')
>>> print(me.get_course)
math
>>> print(me.get_name())
J.J.R.T.





However, there is also another approach to avoid the error. You could simply run the __init__ method of the parent class (i.e. the base class), you need to add the following:

class Teacher(Person):
    def __init__(self, course):
        super().__init__()
        self.course = course
    [...]





When you use super(), you are going to have access directly to the class from which you are inheriting. In the example above, you explicitly called the __init__ method of the parent class. If you try again to run the method me.get_name(), you will see that no error appears, but also that nothing is printed to screen. This is because you triggered the super().__init__() without any arguments and therefore the name defaulted to the empty string. You could change the code like this:

class Teacher(Person):
    def __init__(self, name, course):
        super().__init__(name)
        self.course = course
    [...]





which you would use combining both examples above:

>>> from person import Teacher
>>> me = Teacher('John', 'math')
>>> print(me.get_name())
John





It is important to note that when importing the class, you only import the one you want to use, you don’t need to import the parent, that is the responsibility of whoever developed the Teacher class.




Finer details of classes

With what you have learned up to here, you can achieve a lot of things, it is just a matter of thinking how to connect different methods when it is useful to inherit. Without doubts, it will help you to understand the code developed by others. There are, however, some details that are worth mentioning, because you can improve how your classes look and behave.


Printing objects

Let’s see, for example, what happens if you print an object:

>>> from person import Person
>>> guy = Person('John Snow')
>>> print(guy)
<__main__.Student object at 0x7f0fcd52c7b8>





The output of printing guy is quite ugly and is not particularly useful. Fortunately, you can control what appears on the screen. You have to update the Person class. Add the following method to the end:

def __str__(self):
    return "Person class with name {}".format(self.stored_name)





If you run the code above, you will get the following:

>>> print(guy)
Person class with name John Snow





You can get very creative. It is also important to point out that the method __str__ will be used also when you want to transform an object into a string, for example like this:

>>> class_str = str(guy)
>>> print(class_str)
Person class with name John Snow





Which also works if you do this:

>>> print('My class is {}.'.format(guy))





Something that is important to point out is that this method is inherited. Therefore, if you, instead of printing a Person, print a Student, you will see the same output, which may or may not be the desired behavior.




Defining complex properties

When you are developing complex classes, sometimes you would like to alter the behavior of assigning values to an attribute. For example you would like to change the age of a person when you store the year of birth:

>>> person.year_of_birth = 1980
>>> print(person.age)
38





There is a way of doing this in Python which can be easily implemented even if you don’t fully understand the syntax. Working again in the class Person, we can do the following:

class Person():
    def __init__(self, name=None):
        self.stored_name = name
        self._year_of_birth = 0
        self.age = 0

    @property
    def year_of_birth(self):
        return self._year_of_birth

    @year_of_birth.setter
    def year_of_birth(self, year)
        self.age = 2018 - year
        self._year_of_birth = year





Which can be used like this:

>>> from people import Person
>>> me = Person('Me')
>>> me.age
0
>>> me.year_of_birth = 1980
>>> me.age
32





What is happening is that Python gives you control over everything, including what does the = do when you assign a value to an attribute of a class. The first time you create a @property, you need to specify a function that returns a value. In the case above, we are returning self._year_of_birth. Just doing that will allow you to use me.year_of_birth as an attribute, but it will fail if you try to change its value. This is called a read-only property. If you are working in the lab, it is useful to define methods as read-only properties when you can’t change the value. For example, a method for reading the serial number of a device would be read-only.

If you want to change the value of a property, you have to define a new method. This method is going to be called a setter. That is why you can see the line @year_of_birth.setter. The method takes an argument that triggers two actions. On the one hand, it updates the age, on the other it stores the year in an attribute. It takes a while to get used to, but it can be very handy.






Conclusions

This article is a very short primer on how to start working with classes in Python. You are not supposed to be an expert after such a brief walk-through, but it should be enough for getting you started with your own developments, and, more importantly, to be able to read other developers code and understand what they are doing.

The series of primer articles are thought as a go-to destination when you need to refresh a specific concept. If you find anything missing, you can always leave a comment below and we will expand the article according to your needs. You can find the text of this article on Github [https://github.com/PFTL/website/blob/master/content/blog/08_intro_to_classes.rst].

Header photo by Daniel Cheung [https://unsplash.com/photos/ZqqlOZyGG7g?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText] on Unsplash
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When learning how to build software for controlling hardware, it is very important to start off easy and build on complexity later on. Moreover, with lab equipment it is very important to be able to develop in parallel to the use of the instruments. You don’t want to freeze the use of a machine because you are testing your newly acquired skills. Having affordable and accessible devices is therefore crucial to speed up your development cycle.

In this tutorial, we are going to cover how to use an Arduino as a general purpose DAQ card. Since you communicate with the Arduino through the serial port, you can use it as many other message-based devices already available in the lab. We are going to provide step-by-step instructions to build the device and a basic Python interface to acquire some data from it.
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About the Arduino

Some years ago, an Italian company launched a device that was set to revolutionize the do-it-yourself (DIY) community: the Arduino. The project was simple, they packaged known electronics into a very usable format and provided the software needed for programming it. With this, they opened the door to enthusiasts and professionals to tinker how to interact with the real world. Arduinos are able to read analog signals, digital inputs and also to generate outputs.

Over the years, several versions of the devices started to appear, each with specific characteristics such as shape, connectivity, inputs and outputs, etc. For the purpose of this tutorial, we are going to focus on the Arduino Due, which has two analog outputs, a feature hard to find in other devices. However, this particular board is very hard to find in normal stores, you can of course get it from Aliexpress and Banggood. Except for the analog output section, the code and the examples are the same.




Installing the Arduino IDE

The best place to get started with the Arduino is the official documentation. The first step is to install the editor that you need in order to load code to the board. Head to Arduino.cc [https://www.arduino.cc/en/Guide/HomePage] and follow the instructions according to your platform. Not only every operating system is different, also different boards may have different requisites. For example, for using the Arduino Due you need to include the USB drivers in case you are working on Windows 7 or earlier.

Once you are done with the installation, it is time to start developing the code for the board.




Acquiring Data

This tutorial is not about Arduinos themselves but about how to build a device that will allow you to acquire data from the computer, in exactly the same way than what you would do if you had a DAQ card connected. In any case, I will show you some basic examples for you to get acquainted with the hardware and how to program it. If you open the Arduino IDE, you will find an empty editor. Before starting to develop, you have to check that both the type of card and the port are correct. Check the image below to see where to find the options.

If you go through the menus, you will see that there are some examples available, which can provide a very valuable starting point for learning new options. In a broad sense, the code that runs in an Arduino can be split in two parts: a setup process in which you initialize variables and do some configuration, such as setting the parameters of some ports, etc. This is run only once, when the device boots up. Then you have a loop, in which all the interaction both with the real world and to the computer happens.

Arduinos are not programmed with Python, but with C++ type of code. Therefore the syntax is different, but the routines we will develop are simple enough. If you are in doubt, the fastest is to learn by reading code from others.




Downloading data with Python

Structure the Arduino code to download data. Pyserial
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Pyduino example
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Probably you have run into the problem of wanting to update a plot while acquiring a signal, but finding that Python is busy during the acquisition. This happens, for example, when functions or methods take long to execute and you can’t regain control until it is done. Python has at least two different ways of solving this issue, one is the threading module and the other is the multiprocessing module. They look the same but are fundamentally different, and therefore you need to understand their differences in order to decide when to use one or the other.
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A Simple Measurement Class

First, let’s build a simple measurement class to simulate what you would normally find when performing an experiment. Imagine that you would like to measure Ohm’s law, i.e. the current that flows through a circuit as a function of the voltage applied to it. We can create a class for the measurement and within it, we can define a method to gather results. Later it will become clear why we use a class instead of just a function:

import numpy as np
from time import sleep

class OhmLaw:
    def make_measurement(self, start, stop, num_points, delay):
        x_axis = np.linspace(start, stop, num_points)
        data = []
        for i in x_axis:
            # Acquire fake data
            data.append(np.random.random())
            sleep(delay)

        return data





This is a toy example, in which the data is randomly generated and we are not really using the input parameters at all, but it shouldn’t be too hard to relate this to what you normally do in your lab. If you want to run the code, you can do the following:

As you can see, as soon as the code reaches the highlighted line, it will hang until all the data is generated. This is a very common scenario when the measurement is actively controlled by the computer. In the example above you may wait for 10 seconds, which is not too bad, but normally you would like to see the progress of your experiment in order to decide how to continue.




Running the measurement in a non-blocking way

The first way of solving the issue is to run the measurement in the background. This will allow you to continue with the execution of the code after you have called make_measurement.


Note

When you start dealing with threads, you will find yourself in the situation of having a program that is running an infinite loop and therefore it will never finish. Ctrl + C is your best friend to stop the execution.



The easiest way to achieve this behavior in Python is by using the threading module. Let’s first see how to implement our solution and then we can go into the details.

import threading

ohm = OhmLaw()

t = threading.Thread(target=ohm.make_measurement, args=(0,1,11,1))
t.start()
print('Triggered measurement')





If you run the code above, what you will see is that right after starting the thread, the print statement is executed. You will also notice that the program, even if it reached the end, is waiting for the thread t to be complete before exiting. We can add a bit more of action in order to realize what is happening:

import threading
ohm = OhmLaw()

t = threading.Thread(target=ohm.make_measurement, args=(0,1,11,1))
t.start()
print('Triggered measurement')
i = 0
while t.is_alive():
    i += 1
    print('Acquiring {}\r'.format('.'*i), end=' ')
    sleep(0.5)





If you run the code, you will see on the screen the message ‘Acquiring’ with an incrementing number of dots. If you add a print statement to the make_measurement method, you will see that it gets interleaved into the output. You can already see that there are two different tasks running at the same time. On one hand, you have the make_measurement method that takes longer to run, on the other you are refreshing the screen every half a second. But it is time to learn a bit more about what are the threads we have just created.




What are Threads

A crucial component of every computer is its processor. It is the piece of hardware that makes all the calculations and decisions. You probably know that the amount of computations per unit of time that a processor can perform is limited. That is why some programs take longer to open, or complex code takes longer to complete. However, you may have noticed that on your computer several programs can be performing tasks simultaneously. This is thanks to the operating system, which iterates through different programs in order to keep them all responding.

Within Python, the same functionality can be achieved. Each thread is nothing more than a Python program interpreter running specific tasks. Each program will have a main thread and you may spawn child threads from within it, as you have seen above. This means that in the line where you define threading.Thread, what you are actually doing is creating a new python interpreter within your own program, and that interpreter will be running the method make_measurement with the given arguments.




Plotting Results During Acquisition

So far, the only thing we have done is to print to screen that the acquisition is happening. However, the results of the measurement are lost, we don’t plot nor save them after the program finishes. Now is the time when we can exploit the use of a class instead of a simple function. Remember that the core objective of using classes is to preserve state, exactly what we want to do. We can improve OhmLaw like this:

class OhmLaw:
    def __init__(self):
        self.data = np.zeros(0)  # To store the data of the measurement
        self.step = 0  # To keep track of the step

    def make_measurement(self, start, stop, num_points, delay):
        x_axis = np.linspace(start, stop, num_points)
        self.data = np.zeros(num_points)
        self.step = 0
        for i in x_axis:
            # Acquire fake data
            self.data[self.step] = np.random.random()
            self.step += 1
            sleep(delay)

        return self.data





What we have done now is to define attributes of OhmLaw (i.e., self.data and self.step) that will keep track of the acquisition. The data is immediately available after it has been generated, and therefore we can change how we trigger the measurement, for example:

import threading
ohm = OhmLaw()

t = threading.Thread(target=ohm.make_measurement, args=(0,1,11,1))
t.start()
print('Triggered measurement')
i = ohm.step
while t.is_alive():
    if i != ohm.step:
        print('Latest data value: {}'.format(ohm.data[ohm.step-1]))
        i = ohm.step





The first few lines are the same, but what we are changing is the while loop. First, we check if the step we are measuring is different from the last step we saw. If it is different, then we get the latest data point. Remember that, since the step is incremented right after the acquisition, we should retrieve data[ohm.step-1] or we would be ahead one data point.

As you can see, the while loop doesn’t have any kind of delay, as soon as a new data point is detected, it will be fetched. If you change the delay for make_measurement you will see that the printing to the screen is also altered. This may not be exactly the behavior that you want. In our case, poking the ohm.step is fast, but it may be that you have to communicate to a device to see if there are new data points and perhaps you don’t want to do that as fast as possible but after a certain interval. The code would become:

import threading
ohm = OhmLaw()

t = threading.Thread(target=ohm.make_measurement, args=(0,1,11,1))
t.start()
print('Triggered measurement')
i = ohm.step
while t.is_alive():
    if i != ohm.step:
        print('Number of points acquired: {}'.format(ohm.step-1))
        i = ohm.step
    sleep(2)





As simple as that, now you are checking the ohm.step attribute only once every two seconds. If you start playing around you will see a lot of different behaviors. For example, you will notice that you may lose the last few steps of the measurement if the refresh rate is not fast enough, etc. All these considerations are natural when you start dealing with threads and actions happening simultaneously.




Multiple Threads

If you are of a curious type, probably you are wondering if you could start as many threads as you like. In principle the answer is yes, you are not limited to only one. In fact, when you start a thread, it is technically the second one running, since the main thread is the one that holds the code. Imagine that you want to start a second measurement, you can do:

meas_1 = threading.Thread(target=ohm.make_measurement, args=(0, 1, 11, 1))
meas_1.start()
meas_2 = threading.Thread(target=ohm.make_measurement, args=(0, 1, 20, 1))
meas_2.start()





If you run the code above, you will have two threads, one called meas_1 and the other meas_2, however they share the same data and step attribute in the object ohm. Every time a data point is generated, it will overwrite the value acquired in the other thread. If you were dealing with a real device, it would become much worse, because you would be trying to set two different output voltages on the same device at the same time.

There are different ways around this, the first one is altering the method make_measurement in order to allow only one execution at a time. This can be done by checking if an attribute running is set to True or not. For example:

class OhmLaw:
    def __init__(self):
        self.data = np.zeros(0)  # To store the data of the measurement
        self.step = 0  # To keep track of the step
        self.running = False

    def make_measurement(self, start, stop, num_points, delay):
        if self.running:
            raise Exception("Can't trigger two measurements at the same time")

        x_axis = np.linspace(start, stop, num_points)
        self.data = np.zeros(num_points)
        self.step = 0
        self.running = True
        for i in x_axis:
            # Acquire fake data
            self.data[self.step] = np.random.random()
            self.step += 1
            sleep(delay)
        self.running = False
        return self.data





The main changes here are that we set the attribute running to False when we instantiate the class. Then, when we trigger the make_measurement method, we check if running is set or not. If it is set, we raise an error that will prevent the method to be run again. If it is not set, we continue as always. Check that before entering into the time-consuming loop, we set self.running to True and we set it back to Flase when it is finished. Go ahead and try to run twice the measurement and you won’t be allowed.

It may seem a bit far-fetched, but trying to run the measurement twice is a very common mistake when you have a graphical user interface. Sometimes you don’t realize that a measurement is going on and you try to start a new one. Now we know how to avoid triggering twice the same measurement, but there is one big functionality missing: how to stop a measurement.




Stopping a Thread

When you are running a long task, such as acquiring from a device, it may happen that you need to stop it. For example, you may notice that something is not right with your data, or you already have sufficient information to move on and doesn’t make sense to wait until the end. Python doesn’t allow you to kill threads, which means that we have to find a way around it. As you have seen in the examples above, we are normally exchanging information with the thread through attributes in a class. This means that we could use the same strategy to stop a thread, by breaking the loop. The OhmLaw class will look like:

The highlighted lines point to the changes that we have done in order to stop the loop. Whenever you feel like stopping the acquisition, the only thing you need to do is the following:

ohm.stop = True





And as soon as the last point is generated, the loop will exit without errors. Since you will have access to ohm.step you will know exactly how many data points were acquired, and those will be available in ohm.data. At this point, something that should be bugging you is that we are polluting the OhmLaw class with attributes and considerations that are inherent to working with threads. If you were to use the class in a non-threaded application, the self.stop, self.running, etc. are not useful and are just making the code more complicated.




Subclassing a Thread

One of the many advantages of Python’s syntax is that it is very easy to extend the functionality of any module. In this case, we want to expand how the Thread works, by allowing a direct interaction with the OhmLaw class. Let’s see first how to subclass a Thread in order to start personalizing it. In the examples above, we have constructed a thread and we have called the start method. When you subclass a thread, you don’t define a start, but rather a run method. The official documentation [https://docs.python.org/3/library/threading.html#thread-objects] is quite clear:

The Worker class works exactly the same as a Thread. You can replace the code to run a measurement like this:

meas_1 = Worker(target=ohm.make_measurement, args=(0, 1, 11, 1))
meas_1.start()





And it will behave in the same way as running a normal Thread. Remember that the highlighted line is very important in order to inherit all the functionality from the base class. The main question is why would you like to have a custom thread instead of using the default. Imagine that you don’t want to raise an error when you trigger a second measurement, but instead, you want to build a queue of commands to execute. In that way, you won’t find any issues, nor in our simple example nor when dealing with real devices.

class Worker(Thread):
    def __init__(self):
        super().__init__()
        self.queue = []
        self.keep_running = True

    def add_to_queue(self, target, args=None):
        print('Adding to queue')
        self.queue.append((target, args))

    def stop_thread(self):
        self.keep_running = False

    def run(self):
        while self.keep_running:
            if self.queue:
                func, args = self.queue.pop(0)
                func(*args)





The Worker class has now become a useful tool to run several functions one after the other. The only thing you need to do is to use the method add_to_queue with the appropriate arguments. Let’s see step by step. First, we removed the arguments from the __init__ because we don’t need them. We created two attributes, keep_running that is going to be used to stop the execution of the thread. You would use it like this:

worker = Worker()
worker.start()
worker.add_to_queue(ohm.make_measurement, args=(0, 1, 11, .1))
worker.add_to_queue(ohm.make_measurement, args=(0, 1, 11, .1))
worker.add_to_queue(ohm.make_measurement, args=(0, 1, 11, .1))
while worker.queue:
    print('Queue length: {}'.format(len(worker.queue)))
    sleep(1)
worker.stop_thread()





We begin by creating the worker and starting a separate thread. This is the reason why we have to do start() after instantiating it. The run method is an infinite loop that will look for elements within the queue. If there is a new element, it will get it and it will execute it. The pop command is very useful because it retrieves the element in the first position and deletes that element from the list. As soon as you add an element to the queue, it will be executed. You could add, for example, a method for generating data, a method for saving the data, etc. Remember that if you don’t stop the worker with stop_thread() the program will never finish, because the worker is hanging in an infinite loop.

You can try different things, for example reimplementing the is_alive method. There are no real limits to how much you can bend and improve built-ins by subclassing them. A very useful method to be sure that the thread has finished running is join. If you use worker.join(), the program will block there until the thread is effectively finished.




Using Locks

The example above is already more complicated than what you normally need to do in the lab. After all, you are in complete control of your experiment and therefore you know that you shouldn’t trigger two measurements at the same time. However, there are several tools in threads that at some point may be useful for you and therefore it makes sense to know, at least, that they exist. One of such tools is locks. A lock allows you to prevent the execution of code if another thread is doing something. Let’s see how it works. We start with the simple version of the worker:

from threading import Thread, Lock

lock = Lock()

class Worker(Thread):
    def __init__(self, target, args=None):
        super().__init__()
        self.target = target
        self.args = args

    def run(self):
        lock.acquire()
        self.target(*self.args)
        lock.release()





We define a lock outside of the Worker, because it needs to be shared between different instances. The idea of a lock is that it is open by default. When you do lock.acquire() you are going to close the lock. Unless it is already closed, in which case the code will halt in there waiting until the command lock.release() is executed. We acquire the lock just before running the function, i.e. when the start() is executed and we release it right after. If you try to run two measurements, the second will halt until the first one is finished. The code:

meas_1 = Worker(target=ohm.make_measurement, args=(0, 1, 11, 1))
meas_1.start()
meas_2 = Worker(target=ohm.make_measurement, args=(0, 1, 11, 1))
meas_2.start()





Even if not blocking, because everything was delegated to a thread, will run only one measurement at a time. This is a neat trick that if you implement correctly can save you a lot of time checking whether a specific task is already running or not. Remember that a crucial mistake happens when, for example, an error appears. If the target function raises an error, the lock.release() line will never be executed and the subsequent threads will never run.




Advantages and Limitations of Threads

Right now, especially if it is your first encounter with threads in Python, they may look like the solution to all your problems. They are an amazing tool, relatively easy to implement, there is no argument against that. One of the main advantages of threads is that the memory space is shared, and therefore you can use the information stored in the class OhmLaw in any thread, even the main thread. This allows you to monitor the progress, update a plot or even alter the execution of a method while it is running.

However, we never discussed what happens when the tasks running on threads are computationally expensive. So far, the methods that we have been running inside threads were spending more time in a sleep statement than anything else. This is a normal case for slow experiments, but as soon as you start doing data analysis while you acquire, or you generate a lot of data, things are going to get more complicated. Let’s first see an easy example. Computing random numbers is a relatively expensive task (by expensive I mean computationally). We can define the following function:

import numpy as np

def calculate_random(number_points):
    for i in range(10, number_points):
        data = np.random.random(i)
        fft = np.fft.fft(data)
    return fft





This is an expensive function. We calculate random arrays of variable size and compute their Fourier transform.

from time import time
t0 = time()
d = calculate_random(5000)
print('Total time: {:2.2f} seconds'.format(time()-t0))





If you run the code above, most likely you are going to get something in the order of 10 seconds. Most likely you are working on a multi-core computer. This means that you have different processors available at the same time. If you look at the use of them while the above code is running, you probably will notice that there are only one of the cores being used at 100%, while the others are quite free.

If you were to run the code more than once, for example:

d = calculate_random(5000)
d2 = calculate_random(5000)
...





You will notice that the total time is multiplied by the number of calls to calculate_random. This is expected because while the first is running the program is waiting and when it is done, you execute the other. Let’s see what happens if we run the code in two different threads:

from time import time
from threading import Thread

t0 = time()
t1 = Thread(target=calculate_random, args=(5000,))
t2 = Thread(target=calculate_random, args=(5000,))
t1.start()
t2.start()
t1.join()
t2.join()
print('Total time: {:2.2f} seconds'.format(time()-t0))





Most likely you will see that even if you are running in two different threads, the time it takes to run is twice as long and if you monitor the processors, you will still see that only one is being used. This happens because Python implemented something called the Global Interpreter Lock, or GIL.


The GIL

The Global Interpreter Lock is responsible for triggering concurrently different parts of the code. As we saw earlier, a lock is a tool that allows you to wait for other processes to finish before you start something new. In Python, this means that when you are running code, there is a default daemon that will make sure that no two different lines are executed at the same time.

Basically what the GIL is doing is similar to what the operating system does in single-core CPUs. It runs a task for a short time, switches to another task runs it for a while, switches, etc. On one hand, this behavior has a computational cost associated with the switching from one task to another, on the other, it is not equivalent to two tasks running simultaneously. When the task is not computationally expensive (such as sleep), you will see an increase in efficiency. However, when you start with more complex scenarios where you need to analyze data or save to disk, etc., you may start finding bottlenecks hard to debug and you will see that your computer is far from crashing.

The GIL is also responsible for preventing the simultaneous access to the same memory. Imagine that you are updating a value at the same time that you are deleting it from a different thread. You may face several corruption problems if you are not very careful about how you implement your threads.

The main message, therefore, is that threading doesn’t allow you to run code in parallel, i.e. in different cores, but it allows you to run tasks in a non-blocking way. The benefits of using Threads are, for example, that you can share the memory and that you don’t need to be too careful about how you read or write data into variables. Especially when dealing with normal experiments, threads are going to be more than enough to improve the behavior of your programs.






The Multiprocessing Module

It would be somewhat naïve to settle with the threading module and limit ourselves to one core per computer. Python provides another module called multiprocessing. You can read the details at the official documentation [https://docs.python.org/3.6/library/multiprocessing.html]. Fortunately, the way to work with this module is very similar to the way you work with threads. Let’s build on the previous example:

from multiprocessing import Process

t0 = time()
t1 = Process(target=calculate_random, args=(5000,))
t2 = Process(target=calculate_random, args=(5000,))
t3 = Process(target=calculate_random, args=(5000,))
t1.start()
t2.start()
t3.start()
t1.join()
t2.join()
t3.join()
print('Total time: {:2.2f} seconds'.format(time()-t0))





When you run the code above, you will see that all the processors in your computer are engaged. The number of processes that you can spawn is not limited, but normally you shouldn’t see an increase in performance once you have as many processes as cores on your computer.

Multiprocessing has, however, a limitation that has to be addressed carefully: the state is not shared. Therefore, each process will have access to its own resources, but you can’t simply exchange them. For example, in the experiment, if you start the measurement after you have created the process, the class would have the same value for self.running, meaning that the second time you want to run it, nothing will stop you.




Sharing Information with Queues

The proper way of exchanging information between processes is to use Queues. When we developed the worker earlier, we used the word queue exactly preparing for this topic. A queue holds information that can be accessed by any thread in a first-in-first-out base. Let’s see a simple example:

from multiprocessing import Process, Queue


def move_from_in_to_out(q_in, q_out):
    while not q_in.empty():
        data = q_in.get()
        q_out.put(data)


q_in = Queue()
q_out = Queue()

for i in range(1000):
    q_in.put(i)

p = Process(target=move_from_in_to_out, args=(q_in, q_out))
p.start()
p.join()

print('Q_in is empty: {}'.format(q_in.empty()))

while not q_out.empty():
    print(q_out.get())





First, we define a function that can work with Queues, q_in and q_out. In the example, we are just grabbing elements from one and placing them in the other. To grab an element from a queue you use get() and you use put for the opposite. We populate the q_in with some initial values and then we start a process. Once it is finished, we check that the queue is empty and we print all the elements.

There is nothing really fancy about the example, but it is enough for getting you started. Of course, different processes can access the same queue. For example, you could add a second process that does the opposite, moves from q_out to q_in:

p = Process(target=move_from_in_to_out, args=(q_in, q_out))
p2 = Process(target=move_from_in_to_out, args=(q_out, q_in))





Since p2 will not run if q_out is empty, we should populate it together with q_in. Moreover, we can add a new process to monitor which one of the other two is winning.

def print_len_queue(q_in, q_out):
    while not q_in.empty() or not q_out.empty():
        space = int(q_in.qsize() / (q_in.qsize() + q_out.qsize()) * 50)
        output = str(q_in.qsize())+ '||' + space * ' '+ '|' + (50-space) * ' ' + '||' + str(q_out.qsize()) + '\r'
        print(output, end=' ')

p3 = Process(target=print_len_queue, args=(q_in, q_out))





If you start all the processes, what you will see on screen is a vertical bar that moves to the left or to the right, according to which queue is getting full. This is just a toy example, but that already shows how powerful queues are.




Limitation of Queues

Before you get too enthusiastic about queues, there is a fundamental limitation that you may encounter if you work intensively with them, especially when acquiring large volumes of data. I wanted to use queues in order to acquire images from a CCD and stream them to the hard drive, in order to increase the total time that could be acquired before running out of memory. The idea was having a process that would continuously fetch images from a camera and put them into a queue. A second process would fetch them from it and would save them to a file.

However, it is impossible to know how big a queue can be in Python. Allocating memory is not trivial since the queue can hold any type of data. If you monitor the memory available, you will notice that the larges value that you can store varies from execution to execution and therefore you won’t be able to predict exactly when you are running out of memory. If you find a solution to this problem, please leave a comment because I am more than intrigued by it.

The only solution that I came up with was to manually limit the amount of memory that the queue can take up based on previous experiences. Once a threshold is surpassed, the program would stop acquiring images until the queue is free. It is not very elegant, but at least it doesn’t crash and therefore the data is saved.




Threads and Jupyter

If you are a Jupyter notebook user, you will be very happy to know that threads are compatible with it. Imagine that you are analyzing a large dataset, or that you are performing a measurement from within a cell. It would be ideal to be able to run other cells simultaneously. If you run either a Thread or a Process in one cell, you will be able to continue using your notebook without any problems.

This is very handy if, for example, you are running a simulation and you would like to check the intermediate results. The same steps that we have done at the beginning, with the simulated acquisition of data, can be performed from within Jupyter. I won’t cover the details in this article because they deserve a separated entry, but please, play around and leave your experience in the forum [https://forum.pythonforthelab.com].




Conclusions

Being able to run code in non-blocking ways is fundamental in many applications, not only in the lab but also when you are analyzing or simulating data. When you are running tasks that are not computationally expensive but that take longer to complete, you can easily implement threads. In this article, we have covered some of the strategies that you can implement in order to be able to stop the execution of a thread and how to define your custom workers.

When you are trying to increase the efficiency of a computationally expensive program, threading is not going to help you because of the Global Interpreter Lock (GIL). You should, therefore, use the multiprocessing module, which implements a very similar API to the threading module. This makes your code easy to adapt. The main limitation is that the memory between different processes is not shared, and therefore you need to implement extra strategies in order to exchange data. We have covered Queues, but they are not the only ones.

When the complexity of your program increases, you should always check whether the modules you are using are thread-safe or not. Many developers take into account this factor and develop code that can be run also within threads. However, many developers may not have taken into account that their module could be used in this context and therefore you should test it yourself.

Threading is a very exciting way of programming and is compatible also with older Python versions. I find the Threading and the Multiprocessing syntax very clear and very handy for running tasks such as the ones that appear when controlling a setup or analyzing data. Since Python 3.4 there is a new library called Async [https://docs.python.org/3/library/asyncio.html] that allows running code asynchronously. It looks like the future for this kind of programming, but I found the syntax much harder to understand in order to propose solutions.

As always, the example code can be found here [https://github.com/PFTL/website/tree/master/example_code/10_threads_processes], as well as the source code for this article [https://github.com/PFTL/website/blob/master/content/blog/10_threads_or_processes.rst]. If you find any mistakes or improvements, you are more than welcome to submit them as pull requests on Github.

Header photo by frank mckenna [https://unsplash.com/photos/TYhEoWbbayQ?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText] on Unsplash
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Python for the Lab was born as a companion for the courses given by Uetke [https://www.uetke.com]. The idea is to provide a series of articles that can boost the readers in their Python endeavours. If you have any doubts, or are facing a problem to which there is no obvious solution, or are looking for an opinion, the best is to join the forum [https://forum.pythonforthelab.com], where you will meet a lot of like-minded people.


Aquiles

[image: Aquiles Carattino]
My name is Aquiles and I am the guy behind Python for the Lab (or PFTL). If you would like to get in contact with me or check my projects, you can follow me on Github [https://github.com/aquilesC/] or just drop me a line at aquiles@uetke.com. I am always on the look out for great ideas and inspiration.
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This is the Cookie Policy for Python For The Lab, accessible from https://www.pythonforthelab.com


What Are Cookies

As is common practice with almost all professional websites this site uses cookies, which are tiny files that are downloaded to your computer, to improve your experience. This page describes what information they gather, how we use it and why we sometimes need to store these cookies. We will also share how you can prevent these cookies from being stored however this may downgrade or ‘break’ certain elements of the sites functionality.

For more general information on cookies see the Wikipedia article on HTTP Cookies.




How We Use Cookies

We use cookies for a variety of reasons detailed below. Unfortunately in most cases there are no industry standard options for disabling cookies without completely disabling the functionality and features they add to this site. It is recommended that you leave on all cookies if you are not sure whether you need them or not in case they are used to provide a service that you use.




Disabling Cookies

You can prevent the setting of cookies by adjusting the settings on your browser (see your browser Help for how to do this). Be aware that disabling cookies will affect the functionality of this and many other websites that you visit. Disabling cookies will usually result in also disabling certain functionality and features of the this site. Therefore it is recommended that you do not disable cookies.




The Cookies We Set



	Email newsletters related cookies
This site offers newsletter or email subscription services and cookies may be used to remember if you are already registered and whether to show certain notifications which might only be valid to subscribed/unsubscribed users.










Third Party Cookies

In some special cases we also use cookies provided by trusted third parties. The following section details which third party cookies you might encounter through this site.



	This site uses Google Analytics which is one of the most widespread and trusted analytics solution on the web for helping us to understand how you use the site and ways that we can improve your experience. These cookies may track things such as how long you spend on the site and the pages that you visit so we can continue to produce engaging content.
For more information on Google Analytics cookies, see the official Google Analytics page.










More Information

Hopefully that has clarified things for you and as was previously mentioned if there is something that you aren’t sure whether you need or not it’s usually safer to leave cookies enabled in case it does interact with one of the features you use on our site. This Cookies Policy was created with the help of the CookiePolicyGenerator.com [https://cookiepolicygenerator.com]

However if you are still looking for more information then you can contact us through one of our preferred contact methods:



	Email: aquiles@uetke.com


	By visiting this link: https://www.pythonforthelab.com/contact
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At Python For The Lab, accessible from https://www.pythonforthelab.com, one of our main priorities is the privacy of our visitors. This Privacy Policy document contains types of information that is collected and recorded by Python For The Lab and how we use it.

If you have additional questions or require more information about our Privacy Policy, do not hesitate to contact us through email at aquiles@uetke.com


Log Files

Python For The Lab follows a standard procedure of using log files. These files log visitors when they visit websites. All hosting companies do this and a part of hosting services’ analytics. The information collected by log files include internet protocol (IP) addresses, browser type, Internet Service Provider (ISP), date and time stamp, referring/exit pages, and possibly the number of clicks. These are not linked to any information that is personally identifiable. The purpose of the information is for analyzing trends, administering the site, tracking users’ movement on the website, and gathering demographic information.




Privacy Policies

You may consult this list to find the Privacy Policy for each of the advertising partners of Python For The Lab.

Third-party ad servers or ad networks uses technologies like cookies, JavaScript, or Web Beacons that are used in their respective advertisements and links that appear on Python For The Lab, which are sent directly to users’ browser. They automatically receive your IP address when this occurs. These technologies are used to measure the effectiveness of their advertising campaigns and/or to personalize the advertising content that you see on websites that you visit.

Note that Python For The Lab has no access to or control over these cookies that are used by third-party advertisers.




Third Pary Privacy Policies

Python For The Lab’s Privacy Policy does not apply to other advertisers or websites. Thus, we are advising you to consult the respective Privacy Policies of these third-party ad servers for more detailed information. It may include their practices and instructions about how to opt-out of certain options. You may find a complete list of these Privacy Policies and their links here: Privacy Policy Links.

You can choose to disable cookies through your individual browser options. To know more detailed information about cookie management with specific web browsers, it can be found at the browsers’ respective websites. What Are Cookies?




Children’s Information

Another part of our priority is adding protection for children while using the internet. We encourage parents and guardians to observe, participate in, and/or monitor and guide their online activity.

Python For The Lab does not knowingly collect any Personal Identifiable Information from children under the age of 13. If you think that your child provided this kind of information on our website, we strongly encourage you to contact us immediately and we will do our best efforts to promptly remove such information from our records.




Online Privacy Policy Only

This privacy policy applies only to our online activities and is valid for visitors to our website with regards to the information that they shared and/or collect in Python For The Lab. This policy is not applicable to any information collected offline or via channels other than this website.




Consent

By using our website, you hereby consent to our Privacy Policy and agree to its Terms and Conditions.

This privacy policy was created at World’s Free Privacy Policy Generator [https://privacypolicygenerator.info/#wizard].







          

      

      

    

  

    
      
          
            
  
Tipue Search

A Pelican plugin to serialize generated HTML to JSON that can be used by jQuery plugin - Tipue Search.

Copyright (c) Talha Mansoor

Author          | Talha Mansoor
—————-|—–
Author Email    | talha131@gmail.com
Author Homepage | http://onCrashReboot.com
Github Account  | https://github.com/talha131




Why do you need it?

Static sites do not offer search feature out of the box. Tipue Search [http://www.tipue.com/search/]
is a jQuery plugin that search the static site without using any third party service, like DuckDuckGo or Google.

Tipue Search offers 4 search modes. Its JSON search mode [http://www.tipue.com/search/docs/json/] is the best search mode
especially for large sites.

Tipue’s JSON search mode requires the textual content of site in JSON format.




Requirements

Tipue Search requires BeautifulSoup.

pip install beautifulsoup4








How Tipue Search works

Tipue Search serializes the generated HTML into JSON. Format of JSON is as follows

{
    "pages": [
        { 
            "text": "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent libero. Sed cursus ante dapibus diam. Sed nisi. Nulla quis sem at nibh elementum imperdiet. Duis sagittis ipsum. Praesent mauris. Fusce nec tellus sed augue semper porta. Mauris massa. Vestibulum lacinia arcu eget nulla. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur sodales ligula in libero.",
            "tags": "Example Category",
            "url" : "http://oncrashreboot.com/plugin-example.html",
            "title": "Everything you want to know about Lorem Ipsum"
        },
        { 
            "text": "Sed dignissim lacinia nunc. Curabitur tortor. Pellentesque nibh. Aenean quam. In scelerisque sem at dolor. Maecenas mattis. Sed convallis tristique sem. Proin ut ligula vel nunc egestas porttitor. Morbi lectus risus, iaculis vel, suscipit quis, luctus non, massa. Fusce ac turpis quis ligula lacinia aliquet. Mauris ipsum. Nulla metus metus, ullamcorper vel, tincidunt sed, euismod in, nibh.",
            "tags": "Example Category",
            "url" : "http://oncrashreboot.com/plugin-example-2.html",
            "title": "Review of the book Lorem Ipsum"
        }
    ]
}





JSON is written to file tipuesearch_content.json which is created in the root of output directory.




How to use

To utilize JSON Search mode, your theme needs to have Tipue Search properly configured in it. Official documentation [http://www.tipue.com/search/docs/#json] has the required details.

Pelican Elegant Theme [https://github.com/talha131/pelican-elegant] and Plumage
theme [https://github.com/kdeldycke/plumage] have Tipue Search configured. You can view their
code to understand the configuration.
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